Ant Colony Algorithm Based on Dynamic Pheromone Update and Path Rewards and Punishments
MA Shixuan, YOU Xiaoming, LIU Sheng
1.School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
2.School of Management, Shanghai University of Engineering Science, Shanghai 201620, China
MA Shixuan, YOU Xiaoming, LIU Sheng. Ant Colony Algorithm Based on Dynamic Pheromone Update and Path Rewards and Punishments[J]. Computer Engineering and Applications, 2023, 59(4): 64-76.
[1] 张九龙,王晓峰,芦磊,等.若干新型智能优化算法对比分析研究[J].计算机科学与探索,2022,16(1):88-105.
ZHANG J L,WANG X F,LU L,et al.Analysis and research of several new intelligent optimization algorithms[J].Journal of Frontiers of Computer Science and Technology,2022,16(1):88-105.
[2] 钟倩漪,钱谦,伏云发,等.粒子群优化算法在关联规则挖掘中的研究综述[J].计算机科学与探索,2021,15(5):777-793.
ZHONG Q Y,QIAN Q,FU Y F,et al.Survey of particle swarm optimization algorithm for association rule mining[J].Journal of Frontiers of Computer Science and Technology,2021,15(5):777-793.
[3] 李丹.改进群智能优化算法的海上物流配送路径优化方法[J].舰船科学技术,2020,42(16):184-186.
LI?D.Optimization method of marine logistics distribution path based on improved swarm intelligence optimization algorithm[J].Ship Science and Technology,2020,42(16):184-186.
[4] DORIGO M,MANIEZZO V,COLORNI A.Ant system:optimization by a colony of cooperating agents[J].IEEE Transactions on Systems,Man,and Cybernetics:Part B(Cybernetics),1996,26(1):29-41.
[5] 朱宏伟.基于动态反馈机制的双种群蚁群算法的研究应用[D].上海:上海工程技术大学,2020.
ZHU H W.The research and application of dual-population ant colony optimization based on dynamic feedback mechanism[D].Shanghai:Shanghai University of Engineering Science,2020.
[6] DORIGO M,GAMBARDELLA L M.Ant colony system:a cooperative learning approach to the traveling salesman problem[J].IEEE Transactions on Evolutionary Computation,1997,1(1):53-66.
[7] STüTZLE T,HOOS H H.MAX-MIN ant system[J].Future Generation Computer Systems,2000,16(8):889-914.
[8] 张军,胡晓敏,罗旭耀.蚁群优化[M].北京:清华大学出版社,2007.
ZHANG J,HU X M,LUO X Y.Ant colony optimization[M].Beijing:Tsinghua University Press,2007.
[9] BULLNHEIMER B,HARTL R F,STRAUSS C.A new rank based version of the ant system—a computational study[J].Central European Journal of Operations Research,1999,7(1):25.
[10] 陈佳,游晓明,刘升,等.结合信息熵的多种群博弈蚁群算法[J].计算机工程与应用,2019,55(16):170-178.
CHEN J,YOU X M,LIU S,et al.Entropy-game based multi-population ant colony optimization[J].Computer Engineering and Applications,2019,55(16):170-178.
[11] 张松灿,孙力帆,司彦娜,等.单种群自适应异构蚁群算法的机器人路径规划[J].计算机科学与探索,2022,16(12):2820-2831.
ZHANG S C,SUN L F,SI Y N,et al.Single-colony adaptive heterogeneous ant colony algorithm for mobile robot path planning[J].Journal of Frontiers of Computer Science and Technology,2022,16(12):2820-2831.
[12] 张松灿.基于蚁群算法的移动机器人路径规划研究[D].洛阳:河南科技大学,2021.
ZHANG S C.Research on path planning of mobile robot based on ant colony algorithm[D].Luoyang:Henan University of Science and Technology,2021.
[13] 代婷婷,刘秀,虎亚楠.改进的蚁群算法在路径规划问题中的应用[J].佳木斯大学学报(自然科学版),2022,40(1):123-125.
DAI T T,LIU X,HU Y N.Application of improved ant colony algorithm in path planning problem[J].Journal of Jiamusi University(Natural Science Edition),2022,40(1):123-125.
[14] 代婷婷,董延寿,胡晓飞.蚁群算法的改进及其在最优路径中的应用[J].九江学院学报(自然科学版),2021,36(4):60-63.
DAI T T,DONG Y S,HU X F.Improved ant colony algorithm and its application[J].Journal of Jiujiang University(Natural Science Edition),2021,36(4):60-63.
[15] 赵静,汤云峰,蒋国平,等.基于改进蚁群算法的移动机器人路径规划[J].南京邮电大学学报(自然科学版),2019,39(6):73-78.
ZHAO J,TANG Y F,JIANG G P,et al.Mobile robot path planning based on improved ant colony algorithm[J].Journal of Nanjing University of Posts and Telecommunications(Natural Science Edition),2019,39(6):73-78.
[16] 顾军华,孟慧婕,夏红梅,等.基于改进蚁群算法的多机器人路径规划研究[J].河北工业大学学报,2016,45(5):28-34.
GU J H,MENG H J,XIA H M,et al.Research on multi-robots path planning of robot based on improved ant colony algorithm[J].Journal of Hebei University of Technology,2016,45(5):28-34.
[17] 陈银燕,高安邦.机器人导航路径的多种群博弈蚁群规划策略[J].机械设计与制造,2021(1):272-276.
CHEN Y Y,GAO A B.Robot navigation path planning strategy based on multi-population game ant colony algorithm[J].Machinery Design & Manufacture,2021(1):272-276.
[18] 李涛,赵宏生.基于进化蚁群算法的移动机器人路径优化[J].控制与决策,2022.DOI:10.13195/j.kzyjc.2021.1324.
LI T,ZHAO H S.Path optimization for mobile robot based on evolutionary ant colony algorithm[J].Control and Decision,2022.DOI:10.13195/j.kzyjc.2021.1324.
[19] 孙宇翔,陈浩鹏,任传荣.基于精英策略的蚁群算法在AGV路径优化中的应用[J].物流工程与管理,2022,44(3):30-32.
SUN Y X,CHEN H P,REN C R.Application of ant colony algorithm based on elite strategy in AGV path optimization[J].Logistics Engineering and Management,2022,44(3):30-32.
[20] 李维维,李建东.栅格环境下机器人导航路径的双种群蚁群规划[J].机械设计与制造,2021(8):286-290.
LI W W,LI J D.Robot navigation path planning based on two-population ant colony algorithm under grid environment[J].Machinery Design & Manufacture,2021(8):286-290.
[21] 游晓明,刘升,吕金秋.一种动态搜索策略的蚁群算法及其在机器人路径规划中的应用[J].控制与决策,2017,32(3):552-556.
YOU X M,LIU S,LV J Q.Ant colony algorithm based on dynamic search strategy and its application on path planning of robot[J].Control and Decision,2017,32(3):552-556.
[22] KARAKOSTAS P,SIFALERAS A.A double-adaptive general variable neighborhood search algorithm for the solution of the traveling salesman problem[J].Applied Soft Computing,2022,121:108746.
[23] 陈佳.基于自适应分级机制的多种群蚁群算法及其应用研究[D].上海:上海工程技术大学,2019.
CHEN J.The application and research of multi-population ant colony system based on adaptive classification mechanism[D].Shanghai:Shanghai University of Engineering Science,2019.
[24] 马飞宇,瞿中.基于异构双种群全局视野蚁群算法的移动机器人路径规划研究[J].计算机应用研究,2022,39(6):1705-1709.
MA F Y,QU Z.Research on path planning of mobile robot based on heterogeneous dual population and global vision ant colony algorithm[J].Application Research of Computers,2022,39(6):1705-1709.