Computer Engineering and Applications ›› 2022, Vol. 58 ›› Issue (7): 31-42.DOI: 10.3778/j.issn.1002-8331.2110-0141
• Research Hotspots and Reviews • Previous Articles Next Articles
AN Jiale, LIU Xiaonan, HE Ming, SONG Huichao
Online:
2022-04-01
Published:
2022-04-01
安家乐,刘晓楠,何明,宋慧超
AN Jiale, LIU Xiaonan, HE Ming, SONG Huichao. Survey of Quantum Swarm Intelligence Optimization Algorithm[J]. Computer Engineering and Applications, 2022, 58(7): 31-42.
安家乐, 刘晓楠, 何明, 宋慧超. 量子群智能优化算法综述[J]. 计算机工程与应用, 2022, 58(7): 31-42.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2110-0141
[1] DUAN H B,LUO Q N.New progresses in swarm intelligence-based computation[J].International Journal of Bio-Inspired Computation,2015,7(1):26-35. [2] 何小锋.量子群智能优化算法及其应用研究[D].上海:上海理工大学,2014. HE X F.Quantum swarm intelligent optimization algorithm and its application[D].Shanghai:Shanghai University of Technology,2014. [3] 张大可.现代设计方法[M].北京:机械工业出版社,2014:64-66. ZHANG D K.Modern design method[M].Beijing:China Machine Press,2014:64-66 [4] HOLLAND H J.Genetic algorithms and the optimal allocation of trials[J].Critical Asian Studies,1973,2(2):88-105. [5] DORIGO M.Optimization learning and natural algorithms[D].Italy:Politecnico di Milano,1992. [6] KENNEDY J,EBERHART R.Particle swarm optimization[C]//Proceedings of International Conference on Neural Networks,Perth,WA,Australia,1995:1942-1948. [7] KARABOGA D,BASTURK B.On the performance of artificial bee colony(ABC) algorithm[J].Applied Soft Computing,2008,8(1):687-697. [8] YANG X S,SADAT H S S,GANDOMI A H.Firefly algorithm for solving non-convex economic dispatch problems with valve loading effect[J].Applied Soft Computing,2012,12(3):1180-1186. [9] 周雅兰.细菌觅食优化算法的研究与应用[J].计算机工程与应用,2010,46(20):16-21. ZHOU Y L.Research and application on bacteria foraging optimization algorithm[J].Computer Engineering and Applications,2010,46(20):16-21. [10] DUAN H B,QIAO P X.Pigeon-inspired optimization:A new swarm intelligence optimizer for air robot path planning[J].International Journal of Intelligent Computing and Cybernetics,2014,7(1):24-37. [11] FEYNMAN R.Simulating physics with computers[J].International Journal Theoretical Physics,1982,21(6):467-488. [12] SHOR P W.Algorithm for quantum computation:discrete logarithms and factoring[C]//Proceedings of the 35th Annual Symposium on Foundations of Computer Science,Santa Fe,NM,USA,1994:124-134. [13] GROVER L K.A fast quantum mechanics algorithm for database search[C]//Proceedings of the 28th ACM Symposium on Theory of Computing,1996:212-219. [14] AJIT N,MARK M.Optimization with quantum genetic algorithm[C]//Proceedings of IEEE International Conference on Evolutionary Computation,1996:61-66. [15] HAN K H,KIM J H.Genetic quantum algorithm and its application to combinatorial optimization problem[C]//Proceedings of the 2000 IEEE Congress on Evolutionary Computation,2000:1354-1360. [16] SUN J,FENG B,XU W B.Particle swarm optimization with particles having quantum behavior[C]//Proceedings of the 2004 Congress on Evolutionary Computation,2004:325-331. [17] 李盼池,李士勇.求解连续空间优化问题的量子蚁群算法[J].控制理论与应用,2008(2):237-241. LI P C,LI S Y.Quantum ant colony algorithm for continuous space optimization[J].Control Theory and Application,2008(2):237-241. [18] 唐涛.一种新型二进制编码的量子鱼群算法[J].电脑知识与技术,2008(S1):52-53. TANG T.A new binary coded quantum fish swarm algorithm[J].Computer Knowledge and Technology,2008(S1):52-53. [19] GAO H Y,LIU Y Q,DIAO M.Robust multi-user detection based on quantum bee colony optimisation[J].International Journal of Innovative Computing and Applications,2011,3(3):160-168. [20] LAYEB A.A novel quantum inspired cuckoo search for knapsack problems[J].International Journal of Bio-Inspired Computation,2011,3(5):297-305. [21] 孙冲.混合蛙跳算法改进及控制参数优化仿真研究[D].哈尔滨:哈尔滨工业大学,2011. SUN C.Simulation Research on hybrid frog leaping algorithm improvement and control parameter optimization[D].Harbin:Harbin Institute of Technology,2011. [22] 张剑飞,杜晓昕,王波.基于量子萤火虫和增益Beta的医学DR图像自适应增强[J].微电子学与计算机,2014,31(5):135-139. ZHANG J F,DU X X,WANG B.Adaptive enhancement of medical DR image based on quantum firefly and gain beta[J].Microelectronics and Computer,2014,31(5):135-139. [23] 李枝勇.蝙蝠算法及其在函数优化中的应用研究[D].上海:上海理工大学,2013. LI Z Y.Bat algorithm and its application in function optimization[D].Shanghai:Shanghai University of Technology,2013. [24] 赵卢月.基于量子蚁群算法的最短路径问题研究[D].青岛:青岛理工大学,2019. ZHAO L Y.Research on shortest path problem based on quantum ant colony algorithm[D].Qingdao:Qingdao University of Technology,2019. [25] 万正宜,彭玉旭.求解旅行商问题的改进型量子蚁群算法[J].计算机工程与应用,2016,52(22):59-63. WAN Z Y,PENG Y X.Improved quantum ant colony algorithm for traveling salesman problem[J].Computer Engineering and Applications,2016,52(22):59-63. [26] 何小锋,马良.求解图着色问题的量子蚁群算法[J].运筹学学报,2013,17(2):19-26. HE X F,MA L.Quantum ant colony algorithm for graph coloring problem[J].Journal of Operational Research,2013,17(2):19-26. [27] 何小锋,马良.求解0-1背包问题的量子蚁群算法[J].计算机工程与应用,2011,47(16):29-31. HE X F,MA L.Quantum-inspired ant algorithm for solving 0-1 knapsack problem[J].Computer Engineering and Applications,2011,47(16):29-31. [28] CHEN X F,XIA X Y,YU R Y.Quantum ant colony algorithm based on Bloch coordinates[J].Journal of Computers,2013,8(6):1536-1543. [29] 王灵,王秀亭,俞金寿.基于自适应量子蚁群算法的石脑油裂解炉故障诊断[J].化工学报,2009,60(2):401-408. WANG L,WANG X T,YU J S.Fault diagnosis of naphtha cracking furnace based on adaptive quantum ant colony algorithm[J].Journal of Chemical Industry and Engineering,2009,60(2):401-408. [30] 李絮,刘争艳,谭拂晓.求解TSP的新量子蚁群算法[J].计算机工程与应用,2011,47(32):42-44. LI X,LIU Z Y,TAN F X.Novel quantum ant colony algorithm for TSP[J].Computer Engineering and Applications,2011,47(32):42-44. [31] 贾瑞玉,李亚龙,管玉勇.求解旅行商问题的混合量子蚁群算法[J].计算机工程与应用,2013,49(22):36-39. JIA R Y,LI Y L,GUAN Y Y.Hybrid quantum ant colony algorithm for traveling salesman problem[J].Computer Engineering and Applications,2013,49(22):36-39. [32] 张程程.改进量子蚁群算法的动态最优路径诱导研究[D].哈尔滨:哈尔滨工程大学,2015. ZHANG C C.Research on dynamic optimal path guidance based on improved quantum ant colony algorithm[D].Harbin:Harbin Engineering University,2015. [33] XIA G Q,HAN Z W,ZHAO B,et al.Global path planning for unmanned surface vehicle based on improved quantum ant colony algorithm[J/OL].Mathematical Problems in Engineering:Article ID 2902170.(2019-04-24)[2021-07-01].https://doi.org/10.1155/2019/2902170. [34] WANG L.A novel quantum ant colony optimization algorithm and its application to fault diagnosis[J].Transactions of the Institute of Measurement & Control,2008,30(3/4):313-329. [35] LI F,LIU M,XU G W.A quantum ant colony multi-objective routing algorithm in WSN and its application in a manufacturing environment[J].Sensors,2019,19(15):3334. [36] LI J J,XU B W,YANG Y S,et al.Quantum ant colony optimization algorithm for AGVs path planning based on Bloch coordinates of pheromones[J].Natural Computing,2020,19:673-682. [37] 李晓峰,焦洪双,李东.基于量子蚁群算法的医疗图像阈值分割算法[J].沈阳大学学报(自然科学版),2020,32(6):490-495. LI X F,JIAO H S,LI D.Medical image threshold segmentation algorithm based on quantum ant colony algorithm[J].Journal of Shenyang University(Natural Science Edition),2020,32(6):490-495. [38] 杨树欣,李盼池.基于量子蚁群优化的油田水淹层识别方法[J].计算机与数字工程,2015,43(2):173-177. YANG S X,LI P C.Identification method of water flooded zone in oil field based on quantum ant colony optimization[J].Computer and Digital Engineering,2015,43(2):173-177. [39] 刘瑜,马良.量子蚁群算法在压力容器优化设计中的应用[J].机械强度,2011,33(5):786-790. LIU Y,MA L.Application of quantum ant colony algorithm in optimal design of pressure vessels[J].Mechanical Strength,2011,33(5):786-790. [40] WANG X Y,ZHANG H M,GAO H H.Quantum particle swarm optimization based network Intrusion feature selection and detection[J].IFAC Proceedings Volumes,2008,41(2):12312-12317. [41] KHAYYATZADEH M,TOUSI B.Damping of power system oscillations via quantum particle swarm optimization based distributed static series compensator[J].Electric Power Components and Systems,2013,41(7):729-746. [42] CH S,ANAND N,PANIGRAHI B K,et al.Streamflow forecasting by SVM with quantum behaved particle swarm optimization[J].Neurocomputing,2013,101:18-23. [43] 高浩,须文波,孙俊.量子粒子群算法在图像分割中的应用[J].计算机工程与应用,2007,43(33):24-25. GAO H,XU W B,SUN J.Image segmentation using quantum-behaved particle swarm optimization algorithm[J].Computer Engineering and Applications,2007,43(33):24-25. [44] RADHA R,GOPALAKRISHNAN R.A medical analytical system using intelligent fuzzy level set brain image segmentation based on improved quantum particle swarm optimization[J].Microprocessors and Microsystems,2020,79:103283. [45] ZHAO X G,LIANG J,MENG J,et al.An improved quantum particle swarm optimization algorithm for environmental economic dispatch[J].Expert Systems with Applications,2020,152:113370. [46] 金鹏.改进量子行为粒子群算法的研究及其在优化问题中的应用[D].徐州:中国矿业大学,2018. JIN P.Research on improved quantum-behaved particle swarm optimization and its application in optimization problems[D].Xuzhou:China University of Mining and Technology,2018. [47] 赵国新,陈志炼,魏战红.混合自适应量子粒子群优化算法[J].微电子学与计算机,2019,36(7):76-80. ZHAO G X,CHEN Z L,WEI Z H.Hybrid adaptive quantum particle swarm optimization algorithm[J].Microelectronics & Computer,2019,36(7):76-80. [48] 刘旭光,宋万干.基于量子人工鱼群算法优化的K-mediods聚类挖掘研究[J].贵阳学院学报(自然科学版),2021,16(1):26-31. LIU X G,SONG W G.Research on K-mediods clustering mining based on quantum artificial fish swarm algorithm[J].Journal of Guiyang University(Natural Science Edition),2021,16(1):26-31. [49] 王林川,李传虎,罗晓辉,等.基于量子人工鱼群混合算法的输电网规划[J].华中电力,2009,22(6):1-4. WANG L C,LI C H,LUO X H,et al.Transmission network planning based on quantum artificial fish swarm hybrid algorithm[J].Central China Electric Power,2009,22(6):1-4. [50] 张锴.基于自适应量子人工鱼群算法的动态路径诱导研究[D].沈阳:东北大学,2014. ZHANG K.Research on dynamic path guidance based on adaptive quantum artificial fish swarm algorithm[D].Shenyang:Northeastern University,2014. [51] 行鸿彦,韩杰,刘刚.量子人工鱼群优化的随机共振微弱信号检测[J].计算机仿真,2019,36(10):368-372. XING H Y,HAN J,LIU G.Stochastic resonance weak signal detection based on quantum artificial fish swarm optimization[J].Computer Simulation,2019,36(10):368-372. [52] 李根.基于量子人工鱼群和模糊核聚类算法的网络入侵检测模型研究[J].软件工程,2019,22(6):33-37. LI G.Research on network intrusion detection model based on quantum artificial fish swarm and fuzzy kernel clustering algorithm[J].Software Engineering,2019,22(6):33-37. [53] GAO H Y,LIU Y Q,DIAO M.Robust multi-user detection based on quantum bee colony optimisation[J].International Journal of Innovative Computing and Applications,2011,3(3):160-168. [54] 邓斯凯,毛弋.基于量子人工蜂群算法的配电网多目标优化重构[J].湖南师范大学自然科学学报,2021(2):80-86. DENG S K,MAO Y.Multi-objective optimal reconfiguration of distribution network based on quantum artificial bee colony algorithm[J].Journal of Natural Science of Hunan Normal University,2021(2):80-86. [55] GAO H Y,LI C W.Membrane-inspired quantum bee colony optimization and its applications for decision engine[J].Journal of Central South University,2014,21(5):1887-1897. [56] HUO F C,SUN X T,REN W J.Multilevel image threshold segmentation using an improved Bloch quantum artificial bee colony algorithm[J].Multimedia Tools and Applications,2020,79(3):2447-2471. [57] 侯国莲,弓林娟.基于量子蜂群聚类的T-S模糊建模在智能发电运行控制中应用[J].热力发电,2019,48(9):108-114. HOU G L,GONG L J.Application of T-S fuzzy modeling based on quantum bee colony clustering in intelligent power generation operation control[J].Thermal Power Generation,2019,48(9):108-114. [58] 高相铭,杨世凤,潘三博.基于混沌量子蜂群优化SVR的多峰MPPT算法研究[J].电气传动,2015,45(12):55-60. GAO X M,YANG S F,PAN S B.Research on multi-peak MPPT algorithm based on SVR optimized by chaotic quantum-inspired artificial bee colony[J].Electric Drive,2015,45(12):55-60. [59] KARTOUS W,LAYEB A,CHIKHI S.A new quantum cuckoo search algorithm for multiple sequence alignment[J].Journal of Intelligent Systems,2014,23(3):261-275. [60] 朱海红.量子群智能优化算法设计及其应研究[D].芜湖:安徽师范大学,2018. ZHU H H.Quantum swarm optimization algorithm design and its application[D].Wuhu:Anhui Normal University,2018. [61] 杜传报,全厚德,唐友喜,等.基于膜量子布谷鸟搜索的双通道网络频谱资源分配[J].电波科学学报,2016,31(1):129-137. DU C B,QUAN H D,TANG Y X,et al.Spectrum resource allocation of dual channel network based on membrane quantum cuckoo search[J].Journal of Radio Science,2016,31(1):129-137. [62] 张东寅,王澎涛,袁艳斌,等.基于改进布谷鸟算法的电力系统最优潮流计算[J].水电能源科学,2017,35(1):200-204. ZHANG D Y,WANG P T,YUAN Y B,et al.Power system optimal power flow calculation based on improved cuckoo algorithm[J].Hydropower Energy Science,2017,35(1):200-204. [63] 刘志刚,杜娟,许少华,等.基于量化正交交叉的量子衍生布谷鸟搜索算法[J].信息与控制,2017,46(4):408-414. LIU Z G,DU J,XU S H,et al.Quantum derived cuckoo search algorithm based on quantum orthogonal crossover[J].Information and Control,2017,46(4):408-414. [64] BOUSHAKI S I,KAMEL N,BENDJEHABA O.A new quantum chaotic cuckoo search algorithm for data clustering[J].Expert Systems with Applications,2018,96:358-372. [65] 张强,许少华,刘丽杰.量子混合蛙跳算法在过程神经网络优化中的应用[J].信号处理,2013,29(8):1003-1011. ZHANG Q,XU S H,LIU L J.Application of quantum hybrid frog leaping algorithm in process neural network optimization[J].Signal Processing,2013,29(8):1003-1011. [66] 陈光宇,何健,施蔚锦,等.基于量子混合蛙跳算法的含分布式电源配电网无功优化[J].电网与清洁能源,2015,31(5):36-41. CHEN G Y,HE J,SHI W J,et al.Reactive power optimization of distribution network with distributed generation based on quantum hybrid frog leaping algorithm[J].Power Grid and Clean Energy,2015,31(5):36-41. [67] WANG X M,LIU S,LI Q M,et al.Underwater sonar image detection:A novel quantum-inspired shuffled frog leaping algorithm[J].Chinese Journal of Electronics,2018,27(3):588-594. [68] 赵俊丽.量子萤火虫算法改进及其在图像阈值分割中的应用[D].银川:宁夏大学,2019. ZHAO J L.Improvement of quantum firefly algorithm and its application in image threshold segmentation[D].Yinchuan:Ningxia University,2019. [69] SHAREEF H,LBRAHIM A A,SALMAN N,et al.Power quality and reliability enhancement in distribution systems via optimum network reconfiguration by using quantum firefly algorithm[J].International Journal of Electrical Power and Energy Systems,2014,58:160-169. [70] 齐学梅,王宏涛,杨洁,等.量子萤火虫算法及在无等待流水调度上的应用[J].信息与控制,2016,45(2):211-217. QI X M,WANG H T,YANG J,et al.Quantum firefly algorithm and its application in no wait flow scheduling[J].Information and Control,2016,45(2):211-217. [71] TAO S B,LIU D Z,TANG A P,et al.Bridge critical state search by using quantum genetic firefly algorithm[J].Shock and Vibration,2019(2):1-10. [72] HUO L,WANG Z L,LI R X.Quantum-behaved bat algorithm for service composition[C]//Proceedings of the 2nd International Conference on Comunication Technology.Melboume:Information Engineering Research Institute Press,2015:8. [73] HUANG X W,LI C P,PU Y M,et al.Gaussian quantum bat algorithm with direction of mean best position for numerical function optimization[J].Computational Intelligence and Neuroscience,2019(9):1-18. [74] LI M W,WANG Y T,GENG J,et al.Chaos cloud quantum bat hybrid optimization algorithm[J].Nonlinear Dynamics,2021,103:1167-1193. [75] 周志垚,孙自强.改进量子蝙蝠算法的研究及应用[J].计算机工程与设计,2019,40(1):84-91. ZHOU Z Y,SUN Z Q.Research and application of improved quantum bat algorithm[J].Computer Engineering and Design,2019,40(1):84-91. |
[1] | HOU Xuan, XUE Fei, CHEN Tao. UAV Target Detection on Quantum Multi-pattern Recognition Optimization Algorithm [J]. Computer Engineering and Applications, 2021, 57(7): 228-236. |
[2] | CHEN Yao, CHEN Si. Improved Bat Algorithm Based on Self-adaptive Doppler and Dynamic Neighborhood Strategy [J]. Computer Engineering and Applications, 2021, 57(22): 166-176. |
[3] | ZHOU Lin, GUO Bing. Design of Improved TR Gate Cascade Quantum Comparator [J]. Computer Engineering and Applications, 2021, 57(19): 112-115. |
[4] | CHEN Zhan, GONG Jianning, LIU Yuanyuan, XU Jingbang. Multi-AGV System Path Optimization Algorithm Based on Tabu Search [J]. Computer Engineering and Applications, 2021, 57(10): 273-278. |
[5] | LI Yali, WANG Shuqin, CHEN Qianru, WANG Xiaogang. Comparative Study of Several New Swarm Intelligence Optimization Algorithms [J]. Computer Engineering and Applications, 2020, 56(22): 1-12. |
[6] | CHEN Yao, CHEN Si. Research on Application of Dynamic Weighted Bat Algorithm in Image Segmentation [J]. Computer Engineering and Applications, 2020, 56(14): 207-215. |
[7] | WEI Jin1, LI Hui2, FANG Minglei3. Design of Network-Targeted W-State Double-Server Blind Quantum Computation Protocols [J]. Computer Engineering and Applications, 2019, 55(6): 67-72. |
[8] | SUN Jing, LI Shuo, ZHAO Huiqun. Research on automatic generation of basic path test cases [J]. Computer Engineering and Applications, 2018, 54(20): 48-53. |
[9] | WAN Zhengyi, PENG Yuxu. Improved quantum ant colony algorithm for Traveling Salesman Problem [J]. Computer Engineering and Applications, 2016, 52(22): 59-63. |
[10] | RONG Rong, WU Ping. Stock market selection model based on genetic algorithm [J]. Computer Engineering and Applications, 2016, 52(18): 167-172. |
[11] | LI Ying1, ZHANG Jing1,2, HU Qun1, LI Junhuai1,2. Artificial fish swarm algorithm for virtual machine placement [J]. Computer Engineering and Applications, 2015, 51(4): 22-28. |
[12] | LI Guo1, HONG Xudong2, XU Jian1, HUANG Han2. Evolutionary algorithm based on matrix coding for nurse assignment problem [J]. Computer Engineering and Applications, 2015, 51(4): 244-248. |
[13] | LIN Geng. Iterated tabu search algorithm to minimum weighted dominating set [J]. Computer Engineering and Applications, 2015, 51(23): 78-81. |
[14] | MA Bangxiong, YE Chunming. Research of flow-shop scheduling problem based on quantum cat swarm optimization [J]. Computer Engineering and Applications, 2015, 51(17): 34-37. |
[15] | WANG Yarong, XU Qiuping. BandCut: interactive fast object segmentation using graph cuts [J]. Computer Engineering and Applications, 2013, 49(3): 226-229. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||