Computer Engineering and Applications ›› 2022, Vol. 58 ›› Issue (7): 21-30.DOI: 10.3778/j.issn.1002-8331.2110-0364
• Research Hotspots and Reviews • Previous Articles Next Articles
SHEN Xulin, LI Chaobo, LI Hongjun
Online:
2022-04-01
Published:
2022-04-01
申栩林,李超波,李洪均
SHEN Xulin, LI Chaobo, LI Hongjun. Overview on Video Abnormal Behavior Detection of GAN via Human Density[J]. Computer Engineering and Applications, 2022, 58(7): 21-30.
申栩林, 李超波, 李洪均. 人群密集度下GAN的视频异常行为检测进展[J]. 计算机工程与应用, 2022, 58(7): 21-30.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2110-0364
[1] 李自强,王正勇,陈洪刚,等.基于外观和动作特征双预测模型的视频异常行为检测[J].计算机应用,2021,41(10):2997-3003. LI Z Q,WANG Z Y,CHEN H G,et al.Video abnormal behavior detection based on dual prediction model of appearance and motion features[J].Journal of Computer Applications,2021,41(10):2997-3003. [2] HINTON G E,SALAKHUTDINOV R R.Reducing the dimensionality of data with neural networks[J].Science,2006,313:504-507. [3] 苑春苗,牛瑛,郭涛,等.融合衣服特征迁移的行人重识别方法[J].计算机科学与探索,2021,15(9):1740-1752. YUAN C M,NIU Y,GUO T,et al.Person re-identification combined with clothing infomation transfer[J].Journal of Frontiers of Computer Science and Technology,2021,15(9):1740-1752. [4] 龚苏明,陈莹.时空特征金字塔模块下的视频行为识别[J/OL].计算机科学与探索:1-9(2021-03-04)[2021-10-08].http://kns.cnki.net/kcms/detail/11.5602.TP.20210304.1631. 004.html. GONG S M,CHEN Y.Video action recognition based on spatio-temporal feature pyramid module[J/OL].Journal of Frontiers of Computer Science and Technology:1-9 (2021-03-04)[2021-10-08].http://kns.cnki.net/kcms/detail/11.5602.TP.20210304.1631.004.html. [5] ULLAH W,ULLAH A,HAQ I U,et al.CNN features with bi-directional LSTM for real-time anomaly detection in surveillance networks[J].Multimedia Tools and Applications,2021,80(11):16979-16995. [6] MAQSOOD R,BAJWA U I,SALEEM G,et al.Anomaly recognition from surveillance videos using 3D convolution neural network[J].Multimedia Tools and Applications,2021,80(12):18693-18716. [7] GOODFELLOW I J,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial networks[J].Advances in Neural Information Processing Systems,2014,3:2672-2680. [8] PANNIRSELVAM P M,GEETHA M K,KUMARAVELAN G.A comprehensive study on automated anomaly detection techniques in video surveillance[J].Annals of the Romanian Society for Cell Biology,2021,25(2):4027-4037. [9] NAYAK R,PATI U C,DAS S K.A comprehensive review on deep learning?based methods for video anomaly detection[J].Image and Vision Computing,2020,106:104078. [10] 徐涛,田崇阳,刘才华.基于深度学习的人群异常行为检测综述[J].计算机科学,2021,48(9):125-134. XU T,TIAN C Y,LIU C H.Deep learning for abnormal crowd behavior detection:A review[J].Journal of Computer Science,2021,48(9):125-134. [11] SABOKROU M,KHALOOEI M,FATHY M,et al.Adversarially learned one-class classifier for novelty detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Salt Lake City,June 18-23,2018.Piscataway:IEEE,2018:3379-3388. [12] SABOKROU M,POURREZA M,FAYYAZ M,et al.Avid:Adversarial visual irregularity detection[C]//Proceedings of the Asian Conference on Computer Vision,Perth,Dec 2-6,2018.Berlin:Springer,2018:488-505. [13] ZAHEER M Z,LEE J,ASTRID M,et al.Old is gold:Redefining the adversarially learned one-class classifier training paradigm[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,June 13-19,2020.Piscataway:IEEE,2020:14183-14193. [14] SHAMA F,MECHREZ R,SHOSHAN A,et al.Adversarial feedback loop[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,Seoul,Oct 27-Nov 2,2019.Piscataway:IEEE,2019:3205-3214. [15] VU H,TU D N,LE T,et al.Robust anomaly detection in videos using multilevel representations[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2019:5216-5223. [16] CHEN D,YUE L,CHANG X,et al.NM-GAN:Noise-modulated generative adversarial network for video anomaly detection[J].Pattern Recognition,2021,116:107969. [17] ATGHAEI A,ZIAEINEJAD S,RAHMATI M.Abnormal event detection in urban surveillance videos using GAN and transfer learning[J].arXiv:2011.09619,2020. [18] SHIN W,CHO S B.CCTV image sequence generation and modeling method for video anomaly detection using generative adversarial network[C]//Proceedings of International Conference on Intelligent Data Engineering and Automated Learning,Madrid,Nov 21?23,2018.Berlin:Springer,2018:457-467. [19] SHIN W,BU S J,CHO S B.3D-convolutional neural network with generative adversarial network and auto encoder for robust anomaly detection in video surveillance[J].International Journal of Neural Systems,2020,30(6):2050034. [20] LIU W,LUO W,LIAN D,et al.Future frame prediction for anomaly detection—A new baseline[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Salt Lake City,June 18-23,2018.Piscataway:IEEE,2018:6536-6545. [21] FALK T,MAI D,BENSCH R,et al.U-Net:Deeplearning for cell counting,detection,and morphometry[J].Nature Methods,2019,16(1):67-70. [22] NGUYEN TN,MEUNIER J.Anomaly detection in video sequence with appearance?motion corre?spondence[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,Seoul,Oct 27-Nov 2,2019.Piscataway:IEEE,2019:1273-1283. [23] LEI Z,DENG F,YANG X.Spatial temporal balanced generative adversarial autoencoder for anomaly detection[C]//Proceedings of the 2019 International Conference on Image,Video and Signal Processing,Shanghai,Feb 25-28,2019:1-7. [24] LEE S,KIM H G,RO Y M.STAN:Spatio-temporal adversarial networks for abnormal event detection[C]//Proceedings of 2018 IEEE International Conference on Acoustics,Speech and Signal Processing,Calgary,April 15-20,2018.Piscataway:IEEE,2018:1323-1327. [25] LEE S,KIM H G,RO Y M.BMAN:Bidirectional multi-scale aggregation networks for abnormal event detection[J].IEEE Transactions on Image Processing,2020,29:2395-2408. [26] CHEN D,WANG P,YUE L,et al.Anomaly detection in surveillance video based on bidirectional prediction[J].Image and Vision Computing,2020,98:103915. [27] TANG Y,ZHAO L,ZHANG S,et al.Integrating prediction and reconstruction for anomaly detection[J].Pattern Recognition Letters,2020,129:123-130. [28] LIU Z,NIE Y,LONG C,et al.A hybrid video anomaly detection framework via memory-augmented flow reconstruction and flow-guided frame prediction[C]//Proceedings of the IEEE/CVF Inter-national Conference on Computer Vision,Montreal,Oct 11-17,2021.Piscataway:IEEE,2021:13588-13597. [29] YANG M C,SHIRANI S.Multimodal generative neural network for anomaly events detection and localization in videos[C]//Proceedings of 2021 IEEE Data Science and Learning Workshop(DSLW),Toronto,June 5-6,2021.Piscataway:IEEE,2021:1-6. [30] VU T H,BOONAERT J,AMBELLOUIS S,et al.Multi-channel generative framework and supervised learning for anomaly detection in surveillance videos[J].Sensors,2021,21(9):3179. [31] ZHANG Z,ZHONG S H,LIU Y.Video abnormal event detection via context cueing generative adversarial network[C]//Proceedings of 2021 IEEE International Conference on Multimedia and Expo,Shenzhen,July 5-9,2021.Piscataway:IEEE,2021:1-6. [32] ZHANG W,WANG G,HUANG M,et al.Generative adversarial networks for abnormal event detection in videos based on self-attention mechanism[J].IEEE Access,2021,9:124847-124860. [33] HAO Y,LI J,WANG N N,et al.Spatiotemporal consistency-enhanced network for video anomaly detection[J].Pattern Recognition,2022,121:108232. [34] SINHA A,PADHI S,SHIKALGAR S.A survey and analysis of crowd anomaly detection techniques[C]//Proceedings of 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks,Tirunelveli,Feb 4-6,2021.Piscataway:IEEE,2021:1500-1504. [35] RAVANBAKHSH M,NABI M,SANGINETO E,et al.Abnormal event detection in videos using generative adversarial nets[C]//Proceedings of 2017 IEEE International Conference on Image Processing,Beijing,Sep 17-20,2017.Piscataway:IEEE,2017:1577-1581. [36] RAVANBAKHSH M,SANGINETO E,NABI M,et al.Training adversarial discriminators for cross-channel abnormal event detection in crowds[C]//Proceedings of 2019 IEEE Winter Conference on Applications of Computer Vision,Waikoloa,Jan 7-11,2019.Piscataway:IEEE,2019:1896-1904. [37] HAN Q,WANG H,YANG L,et al.Real-time adversarial GAN-based abnormal crowd behavior detection[J].Journal of Real-Time Image Processing,2020,17(6):2153-2162. [38] 武慧敏.视频中的非特定异常事件时空位置检测[D].成都:电子科技大学,2018. WU H M.A research of unspecified anomaly detection and localization in surveillance videos[D].Chengdu:University of Electronic Science and Technology of China,2018. [39] GANOKRATANAA T,ARAMVITH S,SEBE N.Unsupervised anomaly detection and localization based on deep spatiotemporal translation network[J].IEEE Access,2020,8:50312-50329. [40] ALAFIF T,ALZAHRANI B,CAO Y,et al.Generative adversarial network based abnormal behavior detection in massive crowd videos:A Hajj case study[J].Journal of Ambient Intelligence and Humanized Computing,2021,302:1-12. [41] GANOKRATANAA T,ARAMVITH S,SEBE N.Anomaly event detection using generative adversarial network for surveillance videos[C]//Proceedings of 2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference,Lanzhou,Nov 18?21,2019.Piscataway:IEEE,2019:1395-1399. [42] FAN S,CHEN Y.Anomaly detection based on video prediction and latent space constraints[C]//Proceedings of International Conference on Intelligent Computing,Shenzhen,Aug 12-15,2021.Berlin:Springer,2021:535-546. [43] FERNANDO T,DENMAN S,SRIDHARAN S,et al.Tracking by prediction:A deep generative model for mutli-person localisation and tracking[C]//Proceedings of 2018 IEEE Winter Conference on Applications of Computer Vision(WACV),Lake Tahoe,March 2-15,2018.Piscataway:IEEE,2018:1122-1132. [44] FERNANDO T,DENMAN S,SRIDHARAN S,et al.GD-GAN:Generative adversarial networks for tra-jectory prediction and group detection in crowds[C]//Proceedings of Asian Conference on Computer Vision,Perth,Dec 2-6,2018.Berlin:Springer,2018:314-330. [45] SONG B,SHENG R.Crowd counting and abnormal behavior detection via multiscale GAN network combined with deep optical flow[J].Mathematical Problems in Engineering,2020(8):1-11. [46] 刘文杰.人群计数和人群异常行为检测方法研究[D].西安:西安电子科技大学,2019. LIU W J.Research on crowd counting and crowd abnormal behavior detection methods[D].Xi’an:Xidian University,2019. [47] FENG X,SONG D,CHEN Y,et al.Convolutional transformer based dual discriminator generative adversarial networks for video anomaly detection[C]//Proceedings of the 29th ACM International Conference on Multimedia,Chengdu,Oct 20?24,2021.New York:ACM,2021:5546-5554. [48] AQEEL M,KHAN K B,AZAM M A,et al.Detection of anomaly in videos using convolutional autoencoder and generative adversarial network model[C]//Proceedings of 2020 IEEE 23rd International Multitopic Conference,Bahawalpur,Nov 5-7,2020.Piscataway:IEEE,2020:1-6. [49] WANG D L,WANG S Y.Abnormal event detection algorithm based on dual attention future frame prediction and gap fusion discrimination[J].Journal of Electronic Imaging,2021,30(2):023009. [50] FAN Y X,WEN G J,XIAO F,et al.Detecting anomalies in videos using perception generative adversarial network[J/OL].Circuits,Systems,and Signal Processing[2021-09-15].https://doi.org/10.1007/s00034-021-01820-8. [51] 杨辉,权冀川,梁新宇,等.基于弱监督学习的目标检测研究进展[J].计算机工程与应用,2021,57(16):40-49. YANG H,QUAN J C,LIANG X Y,et al.Research progress of object detection based on weakly supervised learning[J].Computer Engineering and Applications,2021,57(16):40-49. [52] MAHADEVAN V,LI W,BHALODIA V,et al.Anomaly detection in crowded scenes[C]//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Beijing,Oct 24-28,2010.Piscataway:IEEE,2010:1975-1981. [53] MEHRAN R,OYAMA A,SHAH M.Abnormal crowd behavior detection using social force model[C]//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition,Miami,June 20-25,2009.Piscataway:IEEE,2009:935-942. [54] ADAM A,RIVLIN E,SHIMSHONI I,et al.Robust real-time unusual event detection using multiple fixed-location monitors[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(3):555-560. [55] LU C,SHI J,JIA J.Abnormal event detection at 150?fps in matlab[C]//Proceedings of the IEEE International Conference on Computer Vision,Sydney,Dec 1-8,2013.Piscataway:IEEE,2013:2720-2727. [56] SULTANI W,CHEN C,SHAH M.Real-world anomaly detection in surveillance videos[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Salt Lake City,June 18-23,2018.Piscataway:IEEE,2018:6479-6488. [57] LUO W,LIU W,GAO S.A revisit of sparse coding based anomaly detection in stacked RNN framework[C]//Proceedings of the IEEE International Conference on Computer Vision,Venice,Oct 22-29,2017.Piscataway:IEEE,2017:341-349. [58] LEYVA R,SANCHEZ V,LI C T.The LV dataset:A realistic surveillance video dataset for abnormal event detection[C]//Proceeding of 2017 5th International Workshop on Biometrics and Forensics(IWBF),Coventry,April 4-5,2017.Piscataway:IEEE,2017:1-6. [59] 杨灿.一种结合GAN和伪标签的深度半监督模型研究[J].中国科技信息,2020(17):79-83. YANG C.Research on a deep semi-supervised model combining GAN and pseudo-labels[J].China Science and Technology Information,2020(17):79-83. [60] 王冬丽,廖春江,牟金震,等.基于特征融合的SSD视觉小目标检测[J].计算机工程与应用,2020,56(16):31-36. WANG D L,LIAO C J,MOU J Z,et al.SSD visual small target detection based on feature fusion[J].Computer Engineering and Applications,2020,56(16):31-36. [61] MI Y,ZHANG X,LI Z,et al.Dual-branch network with a subtle motion detector for microaction recognition in videos[J].IEEE Transactions on Image Processing,2020,29:6194-6208. |
[1] | WANG Jinyu, YANG Haitao, LI Gaoyuan, ZHANG Changgong, FENG Bodi. Research Progress of Generative Adversarial Network and Its Application in Image Processing [J]. Computer Engineering and Applications, 2021, 57(8): 26-35. |
[2] | LI Jian, SUN Dasong, ZHANG Beiwei. Image Restoration Using Dual-Encoder and Adversarial Training [J]. Computer Engineering and Applications, 2021, 57(7): 192-197. |
[3] | WAN Mengxiang, YAO Hanbing. GAN Model for Malicious Web Training Data Generation [J]. Computer Engineering and Applications, 2021, 57(6): 124-130. |
[4] | ZOU Chengming, HU Youpu. Monocular Depth Estimation in Outdoor Scene with Generative Adversarial Network [J]. Computer Engineering and Applications, 2021, 57(6): 176-183. |
[5] | WEI Fuqiang, Gulanbaier Tuerhong, Mairidan Wushouer. Review of Research on Generative Adversarial Networks and Its Application [J]. Computer Engineering and Applications, 2021, 57(19): 18-31. |
[6] | WU Jie, DUAN Jin, DONG Suoqin, LI Yingchao. Research on Face Recognition Technology of DFM-GAN Network in Cross-Age Simulation [J]. Computer Engineering and Applications, 2021, 57(10): 117-124. |
[7] | WU Chunmei, HU Junhao, YIN Jianghua. Using Improved Generative Adversarial Network for Human Pose Estimation [J]. Computer Engineering and Applications, 2020, 56(8): 96-103. |
[8] | WANG Haiyong, LIANG Hongzhu. Recognition of Local Occluded Facial Expressions Based on Improved Generative Adversarial Network [J]. Computer Engineering and Applications, 2020, 56(5): 141-146. |
[9] | YU Heng, MEI Hongyan, XU Xiaoming, JIA Huiping. Survey of Image Compression Algorithm Based on Deep Learning [J]. Computer Engineering and Applications, 2020, 56(15): 15-23. |
[10] | TAN Junmei1, WANG Lvcheng2, LEI Tao2, WANG Xiaopeng2. Survey of intelligent video analysis technology used in urban rail transit [J]. Computer Engineering and Applications, 2014, 50(4): 1-6. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||