Computer Engineering and Applications ›› 2022, Vol. 58 ›› Issue (7): 1-20.DOI: 10.3778/j.issn.1002-8331.2110-0253
• Research Hotspots and Reviews • Previous Articles Next Articles
YANG Xi, YAN Jie, WANG Wen, LI Shaoyi, LIN Jian
Online:
2022-04-01
Published:
2022-04-01
杨曦,闫杰,王文,李少毅,林健
YANG Xi, YAN Jie, WANG Wen, LI Shaoyi, LIN Jian. Research and Prospect of Brain-Inspired Model for Visual Object Recognition[J]. Computer Engineering and Applications, 2022, 58(7): 1-20.
杨曦, 闫杰, 王文, 李少毅, 林健. 脑启发的视觉目标识别模型研究与展望[J]. 计算机工程与应用, 2022, 58(7): 1-20.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2110-0253
[1] WANG G,OBAMA S,YAMASHITA W,et al.Prior experience of rotation is not required for recognizing objects seen from different angles[J].Nature Neuroscience,2005,8(12):1568-1575. [2] HUBEL D H.Receptive-fields,binocular interaction and functional architecture in the cats visual-cortex[J].Current Contents/Life Sciences,1985,19:23. [3] HUBEL D H,WIESEL T N.Receptive fields of single neurones in the cats striate cortex[J].Journal of Physiology-London,1959,148(3):574-591. [4] RIESENHUBER M,POGGIO T.Hierarchical models of object recognition in cortex[J].Nature Neuroscience,1999,2(11):1019-1025. [5] TARR M J.News on views:Pandemonium revisited[J].Nature Neuroscience,1999,2(11):932-935. [6] SMIRNOV E A,TIMOSHENKO D M,ANDRIANOV S N.Comparison of regularization methods for ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 2nd AASRI Conference on Computational Intelligence and Bioinformatics,2014:89-94. [7] CAO C S,LIU X M,YANG Y,et al.Look and think twice:Capturing top-down visual attention with feedback convolutional neural networks[C]//Proceedings of 2015 IEEE International Conference on Computer Vision,2015:2956-2964. [8] SPAMPINATO C,PALAZZO S,KAVASIDIS I,et al.Deep learning human mind for automated visual classification[C]//Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition,2017:4503-4511. [9] MEL B W.SEEMORE:Combining color,shape,and texture histogramming in a neurally inspired approach to visual object recognition[J].Neural Computation,1997,9(4):777-804. [10] RYBAK I A,GUSAKOVA V I,GOLOVAN A V,et al.A model of attention-guided visual perception and recognition[J].Vision Research,1998,38(15/16):2387-2400. [11] SERRE T,WOLF L,BILESCHI S,et al.Robust object recognition with cortex-like mechanisms[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(3):411-426. [12] PARK M S,ZHANG C J,DEBOLE M,et al.Accelerators for biologically-inspired attention and recognition[C]//Proceedings of 2013 50th ACM/EDAC/IEEE Design Automation Conference,2013:1-6. [13] LU Y F,QIAO H,LI Y,et al.Image recommendation based on a novel biologically inspired hierarchical model[J].Multimedia Tools and Applications,2018,77(4):4323-4337. [14] KARIMIMEHR S,YAZDCHI M R.How computational neuroscience could help improving face recognition systems?[C]//Proceedings of 2014 4th International Conference on Computer and Knowledge Engineering,2014:410-413. [15] WERSING H,KORNER E.Learning optimized features for hierarchical models of invariant object recognition[J].Neural Computation,2003,15(7):1559-1588. [16] LECUN Y,HUANG F J,BOTTOU L.Learning methods for generic object recognition with invariance to pose and lighting[C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2004:97-104. [17] BAIR W.Visual receptive field organization[J].Current Opinion in Neurobiology,2005,15(4):459-464. [18] ZHAO X P,WANG L,ZHAN Y H.A perceptual object based attention mechanism for scene analysis[J].Journal of Image and Graphics,2006,11:281-288. [19] ROUSSELET G A,THORPE S J,FABRE-THORPE M.How parallel is visual processing in the ventral pathway?[J].Trends in Cognitive Sciences,2004,8(8):363-370. [20] AZZOPARDI G,PETKOV N.COSFIRE:A brain-inspired approach to visual pattern recognition[J].Brain-Inspired Computing,2014,8603:76-87. [21] AZZOPARDI G,PETKOV N.Trainable COSFIRE filters for key point detection and pattern recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(2):490-503. [22] AZZOPARDI G,PETKOV N.Automatic detection of vascular bifurcations in segmented retinal images using trainable COSFIRE filters[J].Pattern Recognition Letters,2013,34(8):922-933. [23] DECO G,ROLLS E T.A Neurodynamical cortical model of visual attention and invariant object recognition[J].Vision Research,2004,44(6):621-642. [24] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90. [25] MILLER E K,COHEN J D.An integrative theory of prefrontal cortex function[J].Annual Review of Neuroscience,2001,24:167-202. [26] FUKUSHIMA K.Neocognitron—A self-organizing neural network model for a mechanism of pattern-recognition unaffected by shift in position[J].Biological Cybernetics,1980,36(4):193-202. [27] PERRETT D I,ORAM M W.Neurophysiology of shape processing[J].Image and Vision Computing,1993,11(6):317-333. [28] WALLIS G,ROLLS E T.Invariant face and object recognition in the visual system[J].Progress in Neurobiology,1997,51(2):167-194. [29] SERRE T,KREIMAN G,KOUH M,et al.A quantitative theory of immediate visual recognition[J].Computational Neuroscience:Theoretical Insights into Brain Function,2007,165:33-56. [30] LE Q V.Building high-level features using large scale unsupervised learning[C]//Proceedings of the 2013 IEEE International Conference on Acoustics,Speech and Signal Processing,2013:8595-8598. [31] ZEILER M D,FERGUS R.Visualizing and understanding convolutional networks[C]//Proceedings of the International Conference on Computer Vision,2014:818-833. [32] ZWEIG S,WOLF L.InterpoNet,A brain inspired neural network for optical flow dense interpolation[C]//Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition,2017:6363-6372. [33] KIM E,HANNAN D,KENYON G.Deep sparse coding for invariant multimodal halle berry neurons[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2018:1111-1120. [34] ADELI H,ZELINSKY G.Deep-BCN:Deep networks meet biased competition to create a brain-inspired model of attention control[C]//Proceedings 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,2018:2013-2023. [35] YU C P,LIU H D,SAMARAS D,et al.Modelling attention control using a convolutional neural network designed after the ventral visual pathway[J].Visual Cognition,2019,27:416-434. [36] WEN H,HAN K,SHI J,et al.Deep predictive coding network for object recognition[J].arXiv:1802.04762,2018. [37] MONTOBBIO N,BONNASSE-GAHOT L,CITTI G,et al.KerCNNs:Biologically inspired lateral connections for classification of corrupted images[J].arXiv:1910.08336,2019. [38] DAPELLO J,MARQUES T,SCHRIMPF M,et al.Simulating a primary visual cortex at the front of CNNs improves robustness to image perturbations[J/OL].(2020-06-16)[2021-10-19].https://doi.org/10.1101/2020.06.16.154542. [39] PARK Y J,BAEK S,PAIK S B.A brain-inspired network architecture for cost-efficient object recognition in shallow hierarchical neural networks[J].Neural Networks,2021,134:76-85. [40] PIECH V,LI W,REEKE G N,et al.Network model of top-down influences on local gain and contextual interactions in visual cortex[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110:4108-4117. [41] KARIMI-ROUZBAHANI H,BAGHERI N,EBRAHIMPOUR R.Invariant object recognition is a personalized selection of invariant features in humans,not simply explained by hierarchical feed-forward vision models[J].Scientific Reports,2017,7:14402. [42] NASR K,VISWANATHAN P,NIEDER A.Number detectors spontaneously emerge in a deep neural network designed for visual object recognition[J].Science Advances,2019,5(5):7903. [43] KIM G,JANG J,BAEK S,et al.Visual number sense in untrained deep neural networks[J].Science Advances,2021,7(1):6127. [44] ALBRIGHT T D,STONER G R.Contextual influences on visual processing[J].Annual Review of Neuroscience,2002,25:339-379. [45] LIANG M,HU X L.Recurrent convolutional neural network for object recognition[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition,2015:3367-3375. [46] CARLSON T A,HOGENDOORN H,KANAI R,et al.High temporal resolution decoding of object position and category[J].Journal of Vision,2011,11(10):9. [47] WANG C M,XIONG S,HU X P,et al.Combining features from ERP components in single-trial EEG for discriminating four-category visual objects[J].Journal of Neural Engineering,2012,9(5):056013. [48] YAMINS D L K,HONG H,CADIEU C F,et al.Performance-optimized hierarchical models predict neural responses in higher visual cortex[J].Proceedings of the National Academy of Sciences of the United States of America,2014,111:8619-8624. [49] EICKENBERG M,GRAMFORT A,VAROQUAUX G,et al.Seeing it all:Convolutional network layers map the function of the human visual system[J].Neuroimage,2017,152:184-194. [50] WEN H G,SHI J X,CHEN W,et al.Transferring and generalizing deep-learning-based neural encoding models across subjects[J].Neuroimage,2018,176:152-163. [51] WEN H G,SHI J X,CHEN W,et al.Deep residual network predicts cortical representation and organization of visual features for rapid categorization[J].Scientific Reports,2018,8:3752. [52] SEELIGER K,GUCLU U,AMBROGIONI L,et al.Generative adversarial networks for reconstructing natural images from brain activity[J].Neuroimage,2018,181:775-785. [53] FEDERER C,XU H Y,FYSHE A,et al.Improved object recognition using neural networks trained to mimic the brain’s statistical properties[J].Neural Networks,2020,131:103-114. [54] YILDIRIM I,BELLEDONNE M,FREIWALD W,et al.Efficient inverse graphics in biological face processing[J].Science Advances,2020,6(10):5979. [55] ZHUANG C X,YAN S M,NAYEBI A,et al.Unsupervised neural network models of the ventral visual stream[J].Proceedings of the National Academy of Sciences of the United States of America,2021,118:155556. [56] GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial networks[J].Communications of the ACM,2020,63(11):139-144. [57] LIU J X,ZHAO G P.A bio-inspired SOSNN model for object recognition[C]//Proceedings of the 2018 International Joint Conference on Neural Networks,2018:861-868. [58] HEIDARI-GORJI H,EBRAHIMPOUR R,ZABBAH S.A temporal hierarchical feedforward model explains both the time and the accuracy of object recognition[J].Scientific Reports,2021,11(1):5640. [59] KHERADPISHEH S R,GANJTABESH M,MASQUELIER T.Bio-inspired unsupervised learning of visual features leads to robust invariant object recognition[J].Neurocomputing,2016,205:382-392. [60] FAGHIHI F,MOLHEM H,MOUSTAFA A A.Toward one-shot learning in neuroscience-inspired deep spiking neural networks[J/OL].[2021-10-19].https://doi.org/10.1101/829556. [61] LIU J X,HUO H,HU W T,et al.Brain-inspired hierarchical spiking neural network using unsupervised STDP rule for image classification[C]//Proceedings of 2018 10th International Conference on Machine Learning and Computing,2018:230-235. [62] SONG S,MA C,YU Q.Brain-inspired framework for image classification with a new unsupervised matching pursuit encoding[C]//Proceedings of International Conference on Neural Information Processing,2020:208-219. [63] LIANG Q,ZENG Y,XU B.Temporal-sequential learning with a brain-inspired spiking neural network and its application to musical memory[J].Frontiers in Computational Neuroscience,2020,14:51. [64] DOBORJEH Z G,KASABOV N,DOBORJEH M G,et al.Modelling peri-perceptual brain processes in a deep learning spiking neural network architecture[J].Scientific Reports,2018,8:8912. [65] DAN Y,POO M M.Spike timing-dependent plasticity of neural circuits[J].Neuron,2004,44(1):23-30. [66] SHADLEN M N,MOVSHON J A.Synchrony unbound:A critical evaluation of the temporal binding hypothesis[J].Neuron,1999,24(1):67-77. [67] VOGELS T P,RAJAN K,ABBOTT L F.Neural network dynamics[J].Annual Review of Neuroscience,2005,28:357-376. [68] PEDRETTI G,MILO V,AMBROGIO S,et al.Memristive neural network for on-line learning and tracking with brain-inspired spike timing dependent plasticity[J].Scientific Reports,2017,7:5288. [69] BERBERIAN N,ROSS M,CHARTIER S.Discrimination of motion direction in a robot using a phenomenological model of synaptic plasticity[J].Computational Intelligence and Neuroscience,2019(3). [70] DAVID S V,HAYDEN B Y,GALLANT J L.Spectral receptive field properties explain shape selectivity in area V4[J].Journal of Neurophysiology,2006,96(6):3492-3505. [71] WANG G,TANAKA K,TANIFUJI M.Optical imaging of functional organization in the monkey inferotemporal cortex[J].Science,1996,272:1665-1668. [72] YAMANE Y,CARLSON E T,BOWMAN K C,et al.A neural code for three-dimensional object shape in macaque inferotemporal cortex[J].Nature Neuroscience,2008,11(11):1352-1360. [73] RIESENHUBER M,POGGIO T.Neural mechanisms of object recognition[J].Current Opinion in Neurobiology,2002,12(2):162-168. [74] ZEMAN A A,RITCHIE J B,BRACCI S,et al.Orthogonal representations of object shape and category in deep convolutional neural networks and human visual cortex[J].Scientific Reports,2020,10:2453. [75] MOHSENZADEH Y,MULLIN C,LAHNER B,et al.Emergence of visual center-periphery spatial organization in deep convolutional neural networks[J].Scientific Reports,2020,10:4638. [76] SEELIGER K,FRITSCHE M,GUCLU U,et al.Convolutional neural network-based encoding and decoding of visual object recognition in space and time[J].Neuroimage,2018,180:253-266. [77] CICHY R M,KHOSLA A,PANTAZIS D,et al.Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence[J].Scientific Reports,2016,6:27755. [78] CADIEU C F,HONG H,YAMINS D L K,et al.Deep neural networks rival the representation of primate it cortex for core visual object recognition[J].Plos Computational Biology,2014,10(12):e1003963. [79] AGRAWAL P,STANSBURY D,MALIK J,et al.Pixels to Voxels:Modeling visual representation in the human brain[J].arXiv:1407.5104,2014. [80] DONG Q L,WANG H,HU Z Y.Statistics of visual responses to image object stimuli from primate AIT neurons to DNN neurons[J].Neural Computation,2018,30(2):447-476. [81] KUZOVKIN I,VICENTE R,PETTON M,et al.Activations of deep convolutional neural networks are aligned with Gamma band activity of human visual cortex[J].Communications Biology,2018,1:107. [82] KAR K,KUBILIUS J,SCHMIDT K,et al.Evidence that recurrent circuits are critical to the ventral stream’s execution of core object recognition behavior[J].Nature Neuroscience,2019,22(6):974. [83] JACOB G,PRAMOD R T,KATTI H,et al.Qualitative similarities and differences in visual object representations between brains and deep networks[J].Nature Communications,2021,12(1):1872. [84] VINKEN K,BOIX X,KREIMAN G.Incorporating intrinsic suppression in deep neural networks captures dynamics of adaptation in neurophysiology and perception[J].Science Advances,2020,42:4205. [85] SWIRSKY L T,MARINACCI R M,SPANIOL J.Reward anticipation selectively boosts encoding of gist for visual objects[J].Scientific Reports,2020,10:20196. [86] HAN Y,ROIG G,GEIGER G,et al.Scale and translation-invariance for novel objects in human vision[J].Scientific Reports,2020,10:1411. [87] HONG H,YAMINS D L K,MAJAJ N J,et al.Explicit information for category-orthogonal object properties increases along the ventral stream[J].Nature Neuroscience,2016,19(4):613. [88] SERRE T.Deep learning:The good,the bad,and the ugly[J].Annual Review of Vision Science,2019,5:399-426. [89] RAJALINGHAM R,ISSAE B,BASHIVAN P,et al.Large-scale,high-resolution comparison of the core visual object recognition behavior of humans,monkeys,and state-of-the-art deep artificial neural networks[J].Journal of Neuroscience,2018,38:7255-7269. [90] ULLMAN S,ASSIF L,FETAYA E,et al.Atoms of recognition in human and computer vision[J].Proceedings of the National Academy of Sciences of the United States of America,2016,113:2744-2749. [91] KHERADPISHEH S R,GHODRATI M,GANJTABESH M,et al.Deep networks can resemble human feed-forward vision in invariant object recognition[J].Scientific Reports,2016,6:32672. [92] PRAMOD R T,ARUN S P.Do computational models differ systematically from human object perception?[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition,2016:1601-1609. [93] AYZENBERG V,LOURENCO S F.Skeletal descriptions of shape provide unique perceptual information for object recognition[J].Scientific Reports,2019,9:9359. [94] SOLOMON S G,KOHN A.Moving sensory adaptation beyond suppressive effects in single neurons[J].Current Biology,2014,24:1012-1022. [95] ASHBY E G,MADDOX W T.Human category learning[J].Annual Review of Psychology,2005,56:149-178. [96] ANDRESEN D R,VINBERG J,GRILL-SPECTOR K.The representation of object viewpoint in human visual cortex[J].Neuroimage,2009,45(2):522-536. [97] COX D,MEYERS E,SINHA P.Contextually evoked object-specific responses in human visual cortex[J].Science,2004,304:115-117. [98] BONE M B,AHMAD F,BUCHSBAUM B R.Feature- specific neural reactivation during episodic memory[J].Nature Communications,2020,11:1945. [99] LEVY I,HASSON U,AVIDAN G,et al.Center-periphery organization of human object areas[J].Nature Neuroscience,2001,4(5):533-539. [100] MACEVOY S P,EPSTEIN R A.Constructing scenes from objects in human occipitotemporal cortex[J].Nature Neuroscience,2011,14(10):1323. [101] CICHY R M,PANTAZIS D,OLIVA A.Resolving human object recognition in space and time[J].Nature Neuroscience,2014,17(3):455-462. [102] LANDI S M,FREIWALD W A.Two areas for familiar face recognition in the primate brain[J].Science,2017,357:591-595. [103] GEORGE D,LEHRACH W,KANSKY K,et al.A generative vision model that trains with high data efficiency and breaks text-based CAPTCHAs[J].Science,2017,358:2612. [104] ZHAO F F,KONG Q Q,ZENG Y,et al.A brain-inspired visual fear responses model for UAV emergent obstacle dodging[J].IEEE Transactions on Cognitive and Developmental Systems,2020,12(1):124-132. [105] OKAMURA J Y,YAMAGUCHI R,HONDA K,et al.Neural substrates of view-invariant object recognition developed without experiencing rotations of the objects[J].Journal of Neuroscience,2014,34:15047-15059. [106] GAVORNIK J P,BEAR M F.Learned spatiotemporal sequence recognition and prediction in primary visual cortex[J].Nature Neuroscience,2014,17(5):732. [107] KONEN C S,KASTNER S.Two hierarchically organized neural systems for object information in human visual cortex[J].Nature Neuroscience,2008,11(2):224-231. [108] KAR K,DICARLO J J.Fast recurrent processing via ventrolateral prefrontal cortex is needed by the primate ventral stream for robust core visual object recognition[J].Neuron,2021,109(1):164-176. [109] BRADY T F,KONKLE T,ALVAREZ G A,et al.Visual long-term memory has a massive storage capacity for object details[J].Proceedings of the National Academy of Sciences of the United States of America,2008,105:14325-14329. [110] PONCE C R,XIAO W,SCHADE P F,et al.Evolving images for visual neurons using a deep generative network reveals coding principles and neuronal preferences[J].Cell,2019,177(4):999. [111] COGGAN D D,LIU W L,BAKER D H,et al.Category-selective patterns of neural response in the ventral visual pathway in the absence of categorical information[J].Neuroimage,2016,135:107-114. [112] LANGNER O,DOTSCH R,BIJLSTRA G,et al.Presentation and validation of the radboud faces database[J].Cognition and Emotion,2010,24(8):1377-1388. [113] LAUER T,CORNELISSEN T H W,DRASCHKOW D,et al.The role of scene summary statistics in object recognition[J].Scientific Reports,2018,8:14666. [114] PEELEN M V,FEI-FEI L,KASTNER S.Neural mechanisms of rapid natural scene categorization in human visual cortex[J].Nature,2009,460:94-105. [115] RUSSELL B C,TORRALBA A,MURPHY K P,et al.LabelMe:A database and web-based tool for image annotation[J].International Journal of Computer Vision,2008,77(1/3):157-173. [116] ORLOV T,ZOHARY E.Object representations in human visual cortex formed through temporal integration of dynamic partial shape views[J].Journal of Neuroscience,2018,38(3):659-678. [117] GIELIS J.A generic geometric transformation that unifies a wide range of natural and abstract shapes[J].American Journal of Botany,2003,90(3):333-338. [118] PODVALNY E,FLOUNDERS M W,KING L E,et al.A dual role of peristimulus spontaneous neural activity in visual object recognition[J].Nature Communications,2019,10:3910. [119] DONIGER G M,FOXE J J,SCHROEDER C E,et al.Visual perceptual learning in human object recognition areas:A repetition priming study using high-density electrical mapping[J].Neuroimage,2001,13(2):305-313. [120] RUPP K,ROOS M,MILSAP G,et al.Semantic attributes are encoded in human electrocorticographic signals during visual object recognition[J].Neuroimage,2017,148:318-329. [121] THOMA V,HENSON R N.Object representations in ventral and dorsal visual streams:fMRI repetition effects depend on attention and part-whole configuration[J].Neuroimage,2011,57(2):513-525. [122] SEHATPOUR P,MOLHOLM S,JAVITT D C,et al.Spatiotemporal dynamics of human object recognition processing:An integrated high-density electrical mapping and functional imaging study of “closure” processes[J].Neuroimage,2006,29(2):605-618. [123] SNODGRASS J G,VANDERWART M.A standardized set of 260 pictures:Norms for name agreement,image agreement,familiarity,and visual complexity[J].Journal of Experimental Psychology,1980,62:174-215. [124] GODDARD E,CARLSON T A,DERMODY N,et al.Representational dynamics of object recognition:Feedforward and feedback information flows[J].Neuroimage,2016,128:385-397. [125] KRIEGESKORTE N,MUR M,RUFF D A,et al.Matching categorical object representations in inferior temporal cortex of man and monkey[J].Neuron,2008,60(6):1126-1141. [126] LIN T Y,MAIRE M,BELONGIE S,et al.Microsoft COCO:Common objects in context[C]//Proceedings of International Conference on Computer Vision,2014:740-755. [127] KAPOOR A,SHENOY P,TAN D.Combining brain computer interfaces with vision for object categorization[C]//Proceedings of 2008 IEEE Conference on Computer Vision and Pattern Recognition,2008. [128] GRIFFIN G,HOLUB A,PERONA P.Caltech-256 object category dataset:CalTech Report[R].2007. [129] CADIEU C,HONG H,YAMINS D,et al.The neural representation benchmark and its evaluation on brain and machine[J].arXiv:1301.3530,2013. [130] DENG J,DONG W,SOCHER R,et al.ImageNet:AL[C]//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition,2009:248-255. [131] HORIKAWA T,KAMITANI Y.Generic decoding of seen and imagined objects using hierarchical visual features[J].Nature Communications,2017,8:15037. [132] LI F F,FERGUS R,PERONA P.Learning generative visual models from few training examples:An incremental Bayesian approach tested on 101 object categories[J].Computer Vision and Image Understanding,2007,106(1):59-70. [133] KRIZHEVSKY A,HINTON G.Learning multiple layers of features from tiny images[J].Handbook of Systemic Autoimmune Diseases,2009,1(4):3-58. [134] KATTI H,ARUN S P.Are you from northor south India? A hard face-classification task reveals systematic representational differences between humans and machines[J].Journal of Vision,2019,19(7):1-17. [135] BRODEUR M B,DIONNE-DOSTIE E,MONTREUIL T,et al.The bank of standardized stimuli(BOSS),a new set of 480 normative photos of objects to be used as visual stimuli in cognitive research[J].Plos One,2010,5(5):e10773. [136] GEUSEBROEK J M,BURGHOUTS G J,SMEULDERS A W M.The amsterdam library of object images[J].International Journal of Computer Vision,2005,61(1):103-112. [137] EVERINGHAM M,VAN GOOL L,WILLIAMS C K I,et al.The pascal visual object classes(VOC) challenge[J].International Journal of Computer Vision,2010,88(2):303-338. [138] XIAO J X,HAYS J,EHINGER K A,et al.SUN database:Large-scale scene recognition from abbey to zoo[C]//Proceedings of 2010 IEEE Conference on Computer Vision and Pattern Recognition,2010:3485-3492. [139] STAAL J,ABRAMOFF M D,NIEMEIJER M,et al.Ridge-based vessel segmentation in color images of the retina[J].IEEE Transactions on Medical Imaging,2004,23(4):501-509. [140] HOOVER A,KOUZNETSOVA V,GOLDBAUM M.Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response[J].IEEE Transactions on Medical Imaging,2000,19(3):203-210. [141] GRIGORESCU C,PETKOV N.Distance sets for shape filters and shape recognition[J].IEEE Transactions on Image Processing,2003,12(10):1274-1286. [142] LECUN Y,CORTES C.The MNIST database of handwritten digits[EB/OL].[2021-10-19].http://yann.lecun.com/exdb/mnist/. [143] DOSOVITSKIY A,FISCHER P,ILG E,et al.FlowNet:Learning optical flow with convolutional networks[C]//Proceedings of 2015 IEEE International Conference on Computer Vision,2015:2758-2766. [144] BUTLER D J,WULFF J,STANLEY G B,et al.A naturalistic open source movie for optical flow evaluation[C]//Proceedings of IEEE International Conference on Computer Vision,2012:611-625. [145] GEIGER A,LENZ P,URTASUN R.Are we ready for autonomous driving?The KITTI vision benchmark suite[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition,2012:3354-3361. [146] MENZE M,GEIGER A.Object scene flow for autonomous vehicles[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition,2015:3061-3070. [147] NETZER Y,WANG T,COATES A,et al.Reading digits in natural images with unsupervised feature learning[J].NIPS,2011,49:1-9. [148] SAVARESE S,LI F F.3D generic object categorization,localization and pose estimation[C]//Proceedings of 2007 IEEE 11th International Conference on Computer Vision,2007:1-8. [149] LEIBE B,SCHIELE B.Analyzing appearance and contour based methods for object categorization[C]//Proceedings of 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2003:409. [150] HUANG G B,MATTAR M A,LEE H,et al.Learning to align from scratch[C]//Advances in Neural Information Processing Systems,2012:764-772. [151] KAY K N,NASELARIS T,PRENGER R J,et al.Identifying natural images from human brain activity[J].Nature,2008,452:352-355. [152] NISHIMOTO S,VU A T,NASELARIS T,et al.Reconstructing visual experiences from brain activity evoked by natural movies[J].Current Biology,2011,21(19):1641-1646. [153] RITCHIE J B,DE BEECK H.Using neural distance to predict reaction time for categorizing the animacy,shape,and abstract properties of objects[J].Scientific Reports,2019,9:13201. [154] BRACCI S,DE BEECK H.Dissociations and associations between shape and category representations in the two visual pathways[J].Journal of Neuroscience,2016,36(2):432-444. [155] ZHOU B L,LAPEDRIZA A,KHOSLA A,et al.Places:A 10 million image database for scene recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,40(6):1452-1464. [156] ROSCH E.Basic objects in natural categories[J].Bulletin of the Psychonomic Society,1975,6:415. [157] DE LANDETA A B,PEREYRA M,MEDINA J H,et al.Anterior retro splenial cortex is required for long-term object recognition memory[J].Scientific Reports,2020,10:4002. [158] TODD J J,MAROIS R.Capacity limit of visual short-term memory in human posterior parietal cortex[J].Nature,2004,428:751-754. [159] MICELI G,FOUCH E,CAPASSO R,et al.The dissociation of color from form and function knowledge[J].Nature Neuroscience,2001,4(6):662-667. [160] KOURTZI Z,KANWISHER N.Representation of perceived object shape by the human lateral occipital complex[J].Science,2001,293:1506-1509. [161] GRILL-SPECTOR K,KUSHNIR T,HENDLER T,et al.The dynamics of object-selective activation correlate with recognition performance in humans[J].Nature Neuroscience,2000,3(8):837-843. [162] DOWNING P E,JIANG Y H,SHUMAN M,et al.A cortical area selective for visual processing of the human body[J].Science,2001,293:2470-2473. [163] REES G,FRACKOWIAK R,FRITH C.Two modulatory effects of attention that mediate object categorization in human cortex[J].Science,1997,275:835-838. [164] LI N,DICARLO J J.Unsupervised natural experience rapidly alters invariant object representation in visual cortex[J].Science,2008,321:1502-1507. [165] TAKEUCHI D,HIRABAYASHI T,TAMURA K,et al.Reversal of interlaminar signal between sensory and memory processing in monkey temporal cortex[J].Science,2011,331:1443-1447. [166] BICHOT N P,ROSSI A F,DESIMONE R.Parallel and serial neural mechanisms for visual search in macaque area V4[J].Science,2005,308:529-534. [167] KOSSE C,BURDAKOV D.Natural hypothalamic circuit dynamics underlying object memorization[J].Nature Communications,2019,10:2505. [168] LOPEZ-ARANDA M F,LOPEZ-TELLEZ J F,NAVARRO-LOBATO I,et al.Role of layer 6 of V2 visual cortex in object-recognition memory[J].Science,2009,325:87-89. [169] TENENBAUM J B,KEMP C,GRIFFITHS T L,et al.How to grow a mind:Statistics,structure,and abstraction[J].Science,2011,331:1279-1285. |
[1] | MA Menghao, WANG Zhe. Semi-supervised Learning Method via Wasserstein Distance Under Small Sample Condition [J]. Computer Engineering and Applications, 2022, 58(5): 193-199. |
[2] | YUN Jingyang, LI Xuehua, XIANG Wei. Semantic-Guidance Multi-scale Network for Multi-view Stereo [J]. Computer Engineering and Applications, 2022, 58(2): 215-224. |
[3] | WANG Lin, CHAI Jiangyun. Research on Deep Neural Network in Multi-scene Vehicle Attribute Recognition [J]. Computer Engineering and Applications, 2021, 57(9): 162-167. |
[4] | XU Hao, ZHANG Kai, TIAN Yingjie, CHONG Faguang, WANG Zichao. Review of Deep Neural Network-Based Image Caption [J]. Computer Engineering and Applications, 2021, 57(9): 9-22. |
[5] | ZHU Juntao, YAO Guangle, ZHANG Gexiang, LI Jun, YANG Qiang, WANG Sheng, YE Shaoze. Survey of Few Shot Learning of Deep Neural Network [J]. Computer Engineering and Applications, 2021, 57(7): 22-33. |
[6] | WEI Jihong, ZHENG Rongfeng, LIU Jiayong. Research on Malicious TLS Traffic Identification Based on Hybrid Neural Network [J]. Computer Engineering and Applications, 2021, 57(7): 107-114. |
[7] | BAI Zhixu, WANG Hengjun, GUO Kexiang. Summary of Adversarial Examples Techniques Based on Deep Neural Networks [J]. Computer Engineering and Applications, 2021, 57(23): 61-70. |
[8] | WANG Wentao, LI Shumei, TANG Jie, LYU Weilong. DDoS Attack Detection Method Based on Probability Graph Model and DNN [J]. Computer Engineering and Applications, 2021, 57(13): 108-115. |
[9] | ZHANG Bohan, LING Jie. Improved Malware Detection Method Based on DNN [J]. Computer Engineering and Applications, 2021, 57(10): 81-87. |
[10] | ZENG Shulei, LI Xuehua, PAN Chunyu, WANG Yafei, ZHAO Zhongyuan. Resource Allocation Framework Based on Deep Neural Network in Fog Radio Access Network [J]. Computer Engineering and Applications, 2020, 56(24): 78-84. |
[11] | XIANG Jun, LIN Ranran, HUANG Ziyuan, HOU Jianhua. Research on Impact of Different Temporal Modeling Methods on Video-Based Person Re-identification [J]. Computer Engineering and Applications, 2020, 56(20): 152-157. |
[12] | LI Shuzhi, YU Letao, DENG Xiaohong, LI Zhijun. Neural Network Recommendation Model Combined with Skip-gram Model and Weighted Loss Function [J]. Computer Engineering and Applications, 2020, 56(19): 76-85. |
[13] | LIU Youyong, ZHANG Jiangmei, WANG Kunpeng, FENG Xinghua, YANG Xiuhong. Fast Underwater Target Recognition with Unbalanced Data Set [J]. Computer Engineering and Applications, 2020, 56(17): 236-242. |
[14] | YUAN Jiajie, ZHANG Ling, CHEN Yunhua. Deep Neural Network Based on Attention Convolution Module for Image Recognition [J]. Computer Engineering and Applications, 2019, 55(8): 9-16. |
[15] | JIA Bingbing, CAO Hui, QIN Chijie. Research on Improving Phoneme Recognition Rate Based on Subspace Gaussian Mixture Model and Deep Neural Network Combination [J]. Computer Engineering and Applications, 2019, 55(24): 117-121. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||