YANG Zhou, LIU Haibin. AGV Dynamic Path Planning Based on Improved Ant Colony Algorithm and Dynamic Window Approach[J]. Computer Engineering and Applications, 2022, 58(6): 287-295.
[1] 胡春阳,姜平,周根荣.改进蚁群算法在AGV路径规划中的应用[J].计算机工程与应用,2020,56(8):270-278.
HU C Y,JIANG P,ZHOU G R.Application of improved ant colony optimization in AGV path planning[J].Computer Engineering and Applications,2020,56(8):270-278.
[2] YU L,WEI Z,HUI W,et al.Path planning for mobile robot based on fast convergence ant colony algorithm[C]//2017 IEEE International Conference on Mechatronics and Automation(ICMA),2017.
[3] LUO M,HOU X,YANG J.Surface optimal path planning using an extended Dijkstra algorithm[J].IEEE Access,2020,8:147827-147838.
[4] XIONG X,MIN H,YU Y,et al.Application improvement of A* algorithm in intelligent vehicle trajectory planning[J].Mathematical Biosciences and Engineering,2020,18(1):1-21.
[5] 张松灿,普杰信,司彦娜,等.蚁群算法在移动机器人路径规划中的应用综述[J].计算机工程与应用,2020,56(8):10-19.
ZHANG S C,PU J X,SI Y N,et al.Survey on application of ant colony algorithm in path planning of mobile robot[J].Computer Engineering and Applications,2020,56(8):10-19.
[6] 陈娇,徐菱,陈佳,等.改进A*和动态窗口法的移动机器人路径规划[J].计算机集成制造系统:1-17[2021-08-17].http://kns.cnki.net/kcms/detail/11.5946.tp.20201026.1053.026.html.
CHEN J,XU L,CHEN J,et al.Path planning based on improved A* and dynamic window approach for mobile robot[J].Computer Integrated Manufacturing Systems:1-17[2021-08-17].http://kns.cnki.net/kcms/detail/11.5946.tp.
20201026.1053.026.html.
[7] 武曲,张义,郭坤,等.结合LSTM的强化学习动态环境路径规划算法[J].小型微型计算机系统,2021,42(2):334-339.
WU Q,ZHANG Y,GUO K,et al.LSTM combined with reinforcement learning dynamic environment path planning algorithm[J].Journal of Chinese Computer Systems,2021,42(2):334-339.
[8] 葛志远,肖本贤.使用改进蚁群算法的AGV路径规划研究[J].机械设计与制造,2020,352(6):241-244.
GE Z Y,XIAO B X.Research on path planning for AGV based on improved ant colony algorithm[J].Machinery Design & Manufacture,2020,352(6):241-244.
[9] 王晓燕,杨乐,张宇,等.基于改进势场蚁群算法的机器人路径规划[J].控制与决策,2018,33(10):50-56.
WANG X Y,YANG L,ZHANG Y,et al.Robot path planning based on improved ant colony algorithm with potential field heuristic[J].Control and Decision,2018,33(10):50-56.
[10] 殷绍伟,彭力,戴菲菲.融合改进A*蚁群和滚动窗口法的平滑路径规划[J].计算机科学与探索,2021,15(10):1969-1979.
YIN S W,PENG L,DAI F F.Smooth path planning based on improved A* ant colony and rolling window method[J].Journal of Frontiers of Computer Science and Technology,2021,15(10):1969-1979.
[11] 槐创锋,郭龙,贾雪艳,等.改进A*算法与动态窗口法的机器人动态路径规划[J].计算机工程与应用,2021,57(8):244-248.
HUAI C F,GUO L,JIA X Y,et al.Improved A* algorithm and dynamic window method for robot dynamic path planning[J].Computer Engineering and Applications,2021,57(8):244-248.
[12] 王群笑.基于改进蚁群算法的路径寻优研究[D].杭州:杭州电子科技大学,2019.
WANG Q X.Path optimization research based on improved ant colony algorithm[D].Hangzhou:Hangzhou University of Electronic Science and Technology,2019.
[13] 胡立华,马瑞,张名师,等.基于改进蚁群算法的智能小车路径规划方法[J].太原科技大学学报,2020,41(6):463-469.
HU L H,MA R,ZHANG M S,et al.Intelligent trolley path planning method based on improved ant colony algorithm[J].Journal of Taiyuan University of Science and Technology,2020,41(6):463-469.
[14] 马向华,张谦.改进蚁群算法在机器人路径规划上的研究[J].计算机工程与应用,2021,57(5):210-215.
MA X H,ZHANG Q.Research on improved ant colony algorithm in robots path planning[J].Computer Engineering and Applications,2021,57(5):210-215.
[15] 张晓熠.融合动态窗口法与A*算法的港口AGV路径规划方法研究[D].北京:北京交通大学,2019.
ZHANG X Y.Research on port AGV path planning method based on dynamic window approach integrated with A* algorithm[D].Beijing:Beijing Jiaotong University,2019.