Application of Multi-strategy Ant Colony Algorithm in Robot Path Planning
LIU Shuangshuang, HUANG Yiqing
1.Key Laboratory of Advanced Perception and Intelligent Control of High-End Equipment, Ministry of Education, Anhui Polytechnic University, Wuhu, Anhui 241000, China
2.Anhui Key Laboratory of Electric Drive and Control, Anhui Polytechnic University, Wuhu, Anhui 241000, China
LIU Shuangshuang, HUANG Yiqing. Application of Multi-strategy Ant Colony Algorithm in Robot Path Planning[J]. Computer Engineering and Applications, 2022, 58(6): 278-286.
[1] 朱大奇,颜明重.移动机器人路径规划技术综述[J].控制与决策,2010,25(7):961-967.
ZHU D Q,YAN M Z.Survey on technology of mobile robot path planning[J].Control and Decision,2010,25(7):961-967.
[2] HART P E,NILSSON N J,RAPHAEL B.A formal basis for the heuristic determination of minimum cost paths[J].IEEE Transactions on Systems Science and Cybernetics,1968,4(2):100-107.
[3] KHATIB O.Real-time obstacle avoidance for manipulators and mobile robots[C]//IEEE International Conference on Robotics and Automation.St.Louis:IEEE,1985:500-505.
[4] 康玉祥,姜春英,秦运海,等.基于改进PSO算法的机器人路径规划及实验[J].机器人,2020,42(1):71-78.
KANG Y X,JIANG C Y,QIN Y H,et al.Robot path planning and experiment with an improved PSO algorithm[J].Robot,2020,42(1):71-78.
[5] 魏彤,龙琛.基于改进遗传算法的移动机器人路径规划[J].北京航空航天大学学报,2020,46(4):703-711.
WEI T,LONG C.Path planning for mobile robot based on improved genetic algorithm[J].Journal of Beijing University of Aeronautics and Astronautics,2020,46(4):703-711.
[6] ZHANG W,GONG X,HAN G,et al.An improved ant colony algorithm for path planning in one scenic area with many spots[J].IEEE Access,2017,5:13260-13269.
[7] LEI T,MING L.A robot exploration strategy based on Q-learning network[C]//2016 IEEE International Conference on Real-Time Computing and Robotics(RCAR),Angkor Wat,Cambodia,America,2016:57-62.
[8] 成怡,郝密密.改进深度强化学习的室内移动机器人路径规划[J].计算机工程与应用,2021,57(21):256-262.
CHENG Y,HAO M M.Path planning for indoor mobile robot with improved deep reinforcement learning[J].Computer Engineering and Applications,2021,57(21):256-262.
[9] 陈晖,周德强.改进蚁群优化算法的移动机器人路径规划[J].电子测量技术,2020,43(23):17-22.
CHEN H,ZHOU D Q.Mobile robot path planning based on improved ant colony algorithm[J].Electronic Measurement Technology,2020,43(23):17-22.
[10] 刘智飞,刘冬冬.栅格环境下基于开阔视野蚁群的机器人路径规划[J].重庆理工大学学报(自然科学),2022,36(1):159-164.
LIU Z F,LIU D D.Robot path planning based on wide-field ant colony in grid environment[J].Journal of Chongqing University of Technology(Natural Science),2022,36(1):159-164.
[11] 许凯波,鲁海燕,黄洋,等.基于双层蚁群算法和动态环境的机器人路径规划方法[J].电子学报,2019,47(10):2166-2176.
XU K B,LU H Y,HUANG Y,et al.Robot path planning based on double-layer ant colony optimization algorithm and dynamic environment[J].Acta Electronica Sinica,2019,47(10):2166-2176.
[12] 徐菱,付文浩,江文辉,等.基于16方向24邻域改进蚁群算法的移动机器人路径规划[J].控制与决策,2021,36(5):1137-1146.
XU L,FU W H,JIANG W H,et al.Mobile robots path planning based on 16-directions 24-neighborhoods improved ant colony algorithm[J].Control and Decision,2021,36(5):1137-1146.
[13] 何雅颖,范昕炜.改进蚁群算法在机器人路径规划中的应用[J].计算机工程与应用,2021,57(16):276-282.
HE Y Y,FAN X W.Application of improved ant colony optimization in robot path planning[J].Computer Engineering and Applications,2021,57(16):276-282.
[14] 邓向阳,张立民,方伟,等.基于双向汇聚引导蚁群算法的机器人路径规划[J/OL].系统仿真学报:1-8[2021-09-06].http://kns.cnki.net/kcms/detail/11.3092.v.20210420.1808.
002.html.
DENG X Y,ZHANG L M,FANG W,et al.Robot path planning based on two-way convergent guided ant colony algorithm[J/OL].Journal of System Simulation:1-8[2021-09-06].http://kns.cnki.net/kcms/detail/11.3092.v.20210420.
1808.002.html.
[15] ZHAO Y,WANG J,XIE X.Continuous ant colony algorithm based on entity and its convergence[C]//2008 Second International Symposium on Intelligent Information Technology Application,Shanghai,China,20-22 Dec 2008:80-84.
[16] 张恒,何丽,袁亮,等.基于改进双层蚁群算法的移动机器人路径规划[J].控制与决策,2022,37(2):303-313.
ZHANG H,HE L,YUAN L,et al.Mobile robot path planning using improved double-layer ant colony algorithm[J].Control and Decision,2022,37(2):303-313.