Computer Engineering and Applications ›› 2022, Vol. 58 ›› Issue (5): 34-49.DOI: 10.3778/j.issn.1002-8331.2109-0312
• Research Hotspots and Reviews • Previous Articles Next Articles
LU Bingjie, LI Weizhuo, NA Chongning, NIU Zuoyao, CHEN Kui
Online:
2022-03-01
Published:
2022-03-01
卢冰洁,李炜卓,那崇宁,牛作尧,陈奎
LU Bingjie, LI Weizhuo, NA Chongning, NIU Zuoyao, CHEN Kui. Survey of Auto Insurance Fraud Detection with Machine Learning Models[J]. Computer Engineering and Applications, 2022, 58(5): 34-49.
卢冰洁, 李炜卓, 那崇宁, 牛作尧, 陈奎. 机器学习模型在车险欺诈检测的研究进展[J]. 计算机工程与应用, 2022, 58(5): 34-49.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2109-0312
[1] 喻炜,冯根福,张文珺.机动车辆保险欺诈检测系统及团伙识别研究[J].保险研究,2017(2):63-73. YU W,FENG G F,ZHANG W J.A research on fraud detection system and gang identification of vehicle insurance[J].Insurance Studies,2017(2):63-73. [2] 车险反欺诈联合课题组.车险欺诈与反欺诈问题研究及监管建议[J].保险研究,2021(6):3-10. The Joint Research Team on Anti-Vehicle Frauds.A research on vehicle insurance fraud and anti-fraud and issues and regulatory suggestions[J].Insurance Studies,2021(6):3-10. [3] 张碧怡,肖宇谷,曾宇哲.车险定价中风险因子重要性测度的比较研究——基于集成学习方法和广义线性回归模型[J].保险研究,2019(10):73-83. ZHANG B Y,XIAO Y G,ZENG Y Z.A comparative study on measuring variable importance in auto insurance pricing—based on ensemble learning and generalized linear regression[J].Insurance Studies,2019(10):73-83. [4] VIAENE S,DEDENE G,DERRIG R A.Auto claim fraud detection using Bayesian learning neural networks[J].Expert Systems with Applications,2005,29(3):653-666. [5] HANAFIZADEH P,PAYDAR N R.A data mining model for risk assessment and customer segmentation in the insurance industry[J].International Journal of Strategic Decision Sciences,2013,4(1):51-77. [6] KA??ELAN L,KA??ELAN V,NOVOVI?-BURI? M.A data mining approach for risk assessment in car insurance:evidence from Montenegro[J].International Journal of Business Intelligence Research,2014,5(3):11-28. [7] LI Y,YAN C,LIU W,et al.A principle component analysis-based random forest with the potential nearest neighbor method for automobile insurance fraud identification[J].Applied Soft Computing,2018,70:1000-1009. [8] HE X,CHUA T S.Neural factorization machines for sparse predictive analytics[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval,2017:355-364. [9] GUO J,LIU G,ZUO Y,et al.Learning sequential behavior representations for fraud detection[C]//2018 IEEE International Conference on Data Mining(ICDM),2018:127-136. [10] WANG R,FU B,FU G,et al.Deep & cross network for ad click predictions[C]//Proceedings of the ADKDD’17,2017:1-7. [11] SUBUDHI S,PANIGRAHI S.Use of optimized fuzzy C-means clustering and supervised classifiers for automobile insurance fraud detection[J].Journal of King Saud University-Computer and Information Sciences,2020,32(5):568-575. [12] MAJHI S K.Fuzzy clustering algorithm based on modified whale optimization algorithm for automobile insurance fraud detection[J].Evolutionary Intelligence,2021,14(1):35-46. [13] 庹国柱,段家喜.保险欺诈的博弈分析[J].首都经济贸易大学学报,1999(3):51-54. GUO G Z,DUAN J X.Game analysis of insurance fraud[J].Journal of Capital University of Economics and Business,1999(3):51-54. [14] 刘喜华,金加林.保险欺诈博弈与基于最优博弈策略的保险契约[J].系统工程理论与实践,2004(2):19-24. LIU X H,JIN J L.The insurance fraud game and insurance contract based on optimal game strategies[J].System Engineering Theory and Practice,2004(2):19-24. [15] 桂萍,胡庆为.国内外车险道德风险文献综述[J].保险研究,2011(6):121-127. GUI P,HU Q W.An overview on the domestic and foreign literature on moral risks related to motor insurance[J].Insurance Studies,2011(6):121-127. [16] 赵桂芹,吴洪.汽车保险市场中存在道德风险吗?——来自动态续保数据的分析[J].金融研究,2010(6):175-188. ZHAO G Q,WU H.Is there moral hazard in Chinese automobile insurance market?—evidence from dynamic renewal data[J].Journal of Financial Research,2010(6):175-188. [17] 汤俊,莫依雯.基于数据挖掘技术的车险反欺诈系统构建[J].上海保险,2013(11):39-42. TANG J,MO Y W.Construction of auto insurance anti-fraud system based on data mining technology[J].Shanghai Insurance,2013(11):39-42. [18] 王海巍.我国险企运营中道德风险甄别问题研究——以大数据Hadoop聚类分析技术为视角[J].保险研究,2016(2):59-67. WANG H W.A research on Chinese insurers’moral hazard screening in operation:from the big data Hadoop clustering analysis technology perspective[J].Insurance Studies,2016(2):59-67. [19] 闫春,李亚琪,孙海棠.基于蚁群算法优化随机森林模型的汽车保险欺诈识别研究[J].保险研究,2017(6):114-127. YAN C,LI Y Q,SUN H T.A research on automobile insurance fraud identification based on random forest model and ant colony optimization algorithm[J].Insurance Studies,2017(6):114-127. [20] 徐徐,王正祥,王牧群.基于深度学习技术的机动车辆保险欺诈识别模型与实证研究[J].上海保险,2019(8):53-58. XU X,WANG Z X,WANG M Q.The model and empiri-cal study of motor vehicle insurance fraud identification based on deep learning technology[J].Shanghai Insurance,2019(8):53-58. [21] PANIGRAHI S,PALKAR B.Comparative analysis on classification algorithms of auto-insurance fraud detection based on feature selection algorithms[J].Int J Comput Sci Eng,2018,6(9):72-77. [22] B?ASZCZY?SKI J,DE ALMEIDA FILHO A T,MATUSZYK A,et al.Auto loan fraud detection using dominance-based rough set approach versus machine learning methods[J].Expert Systems with Applications,2021,163:113740. [23] HASSAN A K I,ABRAHAM A.Modeling insurance fraud detection using imbalanced data classification[M]//Advances in nature and biologically inspired computing.Cham:Springer,2016:117-127. [24] PADHI S,PANIGRAHI S.Decision templates based ensemble classifiers for automobile insurance fraud detection[C]//2019 Global Conference for Advancement in Technology(GCAT),2019:1-5. [25] ?UBELJ L,FURLAN ?,BAJEC M.An expert system for detecting automobile insurance fraud using social network analysis[J].Expert Systems with Applications,2011,38(1):1039-1052. [26] BERMúDEZ L,PéREZ J M,AYUSO M,et al.A Bayesian dichotomous model with asymmetric link for fraud in insurance[J].Insurance:Mathematics and Economics,2008,42(2):779-786. [27] BHOWMIK R.Detecting auto insurance fraud by data mining techniques[J].Journal of Emerging Trends in Computing and Information Sciences,2011,2(4):156-162. [28] YAN C,LI Y.The identification algorithm and model construction of automobile insurance fraud based on data mining[C]//2015 Fifth International Conference on Instrumentation and Measurement,Computer,Communication and Control(IMCCC),2015:1922-1928. [29] MIHAELA D,D?NU?VASILE J.Modeling the frequency of auto insurance claims by means of Poisson and negative binomial models[J].Annals of the Alexandru Ioan Cuza University-Economics,2015,62(2):151-168. [30] NIAN K,ZHANG H,TAYAL A,et al.Auto insurance fraud detection using unsupervised spectral ranking for anomaly[J].The Journal of Finance and Data Science,2016,2(1):58-75. [31] BADRIYAH T,RAHMANIAH L,SYARIF I.Nearest neighbour and statistics method based for detecting fraud in auto insurance[C]//2018 International Conference on Applied Engineering(ICAE),2018:1-5. [32] YAN C,LI Y,LIU W,et al.An artificial bee colony-based kernel ridge regression for automobile insurance fraud identification[J].Neurocomputing,2020,393:115-125. [33] XU W,WANG S,ZHANG D,et al.Random rough subspace based neural network ensemble for insurance fraud detection[C]//2011 Fourth International Joint Conference on Computational Sciences and Optimization,2011:1276-1280. [34] DHIEB N,GHAZZAI H,BESBES H,et al.A secure AI-driven architecture for automated insurance systems:fraud detection and risk measurement[J].IEEE Access,2020,8:58546-58558. [35] LIANG C,LIU Z,LIU B,et al.Uncovering insurance fraud conspiracy with network learning[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval,2019:1181-1184. [36] LIU Z,DOU Y,YU P S,et al.Alleviating the inconsistency problem of applying graph neural network to fraud detection[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval,2020:1569-1572. [37] QU Y,CAI H,REN K,et al.Product-based neural networks for user response prediction[C]//2016 IEEE 16th International Conference on Data Mining(ICDM),2016:1149-1154. [38] CHENG H T,KOC L,HARMSEN J,et al.Wide & deep learning for recommender systems[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems,2016:7-10. [39] XIAO J,YE H,HE X,et al.Attentional factorization machines:learning the weight of feature interactions via attention networks[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence,2017:3119-3125. [40] WANG Y,XU W.Leveraging deep learning with LDA-based text analytics to detect automobile insurance fraud[J].Decision Support Systems,2018,105:87-95. [41] GUO H,TANG R,YE Y,et al.DeepFM:a factorization-machine based neural network for CTR prediction[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence,2017:1725-1731. [42] GOMES C,JIN Z,YANG H.Insurance fraud detection with unsupervised deep learning[J].Journal of Risk and Insurance,2021,88(3):591-624. [43] 张连增,孙维伟.车险索赔概率影响因素的Logistic模型分析[J].保险研究,2012(7):16-25. ZHANG L Z,SUN W W.Analysis of factors affecting the probability of auto insurance claim occurrence with logistic model[J].Insurance Studies,2012(7):16-25. [44] 袁幕琴.保险欺诈与大数据时代下的防范对策[J].金融与经济,2015(7):77-80. YUAN M Q.Insurance fraud and countermeasures in the era of big data[J].Finance and Economy,2015(7):77-80. [45] 卢文龙.大数据与车险反欺诈模型构建[J].上海保险,2015(1):27-30. LU W L.Big data and auto insurance anti-fraud model construction[J].Shanghai Insurance,2015(1):27-30. [46] 张澄,赵晨.位置大数据在车辆保险风险管理中的应用[J].大数据,2016,2(5):79-87. ZHANG C,ZHAO C.Application of location-based big data in auto insurance risk control[J].Big Data Research,2016,2(5):79-87. [47] 叶明华.基于BP神经网络的保险欺诈识别研究——以中国机动车保险索赔为例[J].保险研究,2011(3):79-86. YE M H.Insurance fraud identification research based on BP neurological network—with China motor insurance claim as an example[J].Insurance Studies,2011(3):79-86. [48] 闫春,厉美璇,周潇.基于改进的遗传算法优化BP神经网络的车险欺诈识别模型[J].山东科技大学学报(自然科学版),2019,38(5):72-80. YAN C,LI M X,ZHOU X.Improved genetic algorithm for vehicle insurance fraud identification model based on BP neural network[J].Journal of Shandong University of Science and Technology(Natural Science),2019,38(5):72-80. [49] 赵长利,李方媛.汽车保险网络风险闭环控制优化模型及算法[J].系统工程,2016,34(3):69-73. ZHAO C L,LI F Y.An optimization model and algorithm of closed-loop control for the risks of automobile insurance network[J].System Engineering,2016,34(3):69-73. [50] CHEN W Y,LIU Y C,KIRA Z,et al.A closer look at few-shot classification[J].arXiv:1904.04232,2019. [51] BENDRE N,MARíN H T,NAJAFIRAD P.Learning from few samples:a survey[J].arXiv:2007.15484,2020. [52] 杨烁.基于图的车险欺诈可视化分析系统的设计与实现[D].北京:北京邮电大学,2019. YANG S.The design and implementation of vehicle insurance fraud visual analysis system based on graph[D].Beijing:Beijing University of Posts and Telecommunications,2019. [53] 漆桂林,高桓,吴天星.知识图谱研究进展[J].情报工程,2017,3(1):4-25. QI G L,GAO H,WU T X.The research advances of knowledge graph[J].Technology Intelligence Engineering,2017,3(1):4-25. [54] 胡志磊,靳小龙,陈剑赟,等.事件图谱的构建、推理与应用[J].大数据,2021,7(3):80-96. HU Z L,JIN X L,CHEN J Y,et al.Construction,reasoning and applications of event graphs[J].Big Data Research,2021,7(3):80-96. [55] FRANKENDAL J M,GHANBARISAIED S.Enabling innovation through an ecosystem:an exploratory case study[Z].2020. [56] 曾春艳,严康,王志锋,等.深度学习模型可解释性研究综述[J].计算机工程与应用,2021,57(8):1-9. ZENG C Y,YAN K,WANG Z F,et al.Survey of interpretability research on deep learning models[J].Computer Engineering and Applications,2021,57(8):1-9. [57] 孙影影,贾振堂,朱昊宇.多模态深度学习综述[J].计算机工程与应用,2020,56(21):1-10. SUN Y Y,JIA Z T,ZHU H Y.Summary of multimodal deep learning[J].Computer Engineering and Applications,2020,56(21):1-10. [58] 杨杨,詹德川,姜远,等.可靠多模态学习综述[J].软件学报,2021,32(4):1067-1081. YANG Y,ZHAN D C,JIANG Y,et al.Reliable multi-modal learning:a survey[J].Journal of Software,2021,32(4):1067-1081. [59] 王雪鹏,刘康,何世柱,等.基于网络语义标签的多源知识库实体对齐算法[J].计算机学报,2017,40(3):701-711. WANG X P,LIU K,HE S Z,et al.Multi-source knowledge bases entity alignment by leveraging semantic tags[J].Chinese Journal of Computers,2017,40(3):701-711. [60] 陈焕新,李爱萍.基于Fabric的快速公平合同签署协议[J]计算机工程与应用,2022,58(2):116-122. CHEN H X,LI A P.Fast and fair contract signing protocol for fabric[J].Computer Engineering and Applications,2022,58(2):116-122. [61] 王健宗,孔令炜,黄章成,等.联邦学习算法综述[J].大数据,2020,6(6):64-82. WANG J Z,KONG L W,HUANG Z C,et al.Research review of federated learning algorithms[J].Big Data Research,2020,6(6):64-82. [62] 刘俊旭,孟小峰.机器学习的隐私保护研究综述[J].计算机研究与发展,2020,57(2):346-362. LIU J X,MENG X F.Survey on privacy-preserving machine learning[J].Journal of Computer Research and Development,2020,57(2):346-362. |
[1] | ZHANG Hao, ZHANG Xiaoyu, ZHANG Zhenyou, LI Wei. Summary of Intrusion Detection Models Based on Deep Learning [J]. Computer Engineering and Applications, 2022, 58(6): 17-28. |
[2] | WANG Xinpeng, WANG Xiaoqiang, LIN Hao, LI Leixiao, YANG Yanyan, MENG Chuang, GAO Jing. Review on Improvement of Typical Object Detection Algorithms in Deep Learning [J]. Computer Engineering and Applications, 2022, 58(6): 42-57. |
[3] | CHEN Jiatao, ZHANG Hongkai, HUANG Yanping, LAN Gongpu, XU Jingjiang, QIN Jia, AN Lin. Video-Based Physiological Parameters Measurement Technology and Research Advances [J]. Computer Engineering and Applications, 2022, 58(6): 58-68. |
[4] | WANG Jing, WANG Kai, YAN Yingjian. Research on Side Channel Attack Technology Based on Conditional Generation Against Network [J]. Computer Engineering and Applications, 2022, 58(6): 110-117. |
[5] | WANG Yu, WANG Xin, ZHANG Shujuan, ZHENG Guoqiang, ZHAO Long, ZHENG Gaofeng. Research on Efficient Knowledge Fusion Method for Heterogeneous Big Data Environments [J]. Computer Engineering and Applications, 2022, 58(6): 142-148. |
[6] | LI Yanchen, ZHANG Xiaojun, ZHANG Minglu, SHEN Liangyi. Object Detection in Autonomous Driving Scene Based on Improved Efficientdet [J]. Computer Engineering and Applications, 2022, 58(6): 183-191. |
[7] | ZHANG Zhenwei, HAO Jianguo, HUANG Jian, PAN Chongyu. Review of Few-Shot Object Detection [J]. Computer Engineering and Applications, 2022, 58(5): 1-11. |
[8] | ZHAO Zhenzhen, DONG Yanru, CAO Hui, CAO Bin. Research Status of Elderly Fall Detection Algorithms [J]. Computer Engineering and Applications, 2022, 58(5): 50-65. |
[9] | QIU Ye, SHAO Xiongkai, GAO Rong, WANG Chunzhi, LI Jing. Social Recommendation Algorithm Based on Attention Gated Neural Network [J]. Computer Engineering and Applications, 2022, 58(5): 112-118. |
[10] | ZHAO Hong, FU Zhaoyang, ZHAO Fan. Microblog Sentiment Analysis Based on BERT and Hierarchical Attention [J]. Computer Engineering and Applications, 2022, 58(5): 156-162. |
[11] | HE Yuzhe, HE Ning, ZHANG Ren, LIANG Yubo, LIU Xiaoxiao. Research on Imbalanced Training of Deep Learning Target Detection Model [J]. Computer Engineering and Applications, 2022, 58(5): 172-178. |
[12] | LIU Jia, BIAN Fangzhou, CHEN Dapeng, LI Weibin. Fingertip Detection Model Based on UGF-Net [J]. Computer Engineering and Applications, 2022, 58(5): 225-231. |
[13] | XU Xuetian, CAI Yuexin. Motor Imagery Recognition Based on Graph Convolution Network [J]. Computer Engineering and Applications, 2022, 58(4): 186-191. |
[14] | GUAN Liwen, SUN Xinlei, YANG Pei. Grasping Detection Based on Key Point Estimation [J]. Computer Engineering and Applications, 2022, 58(4): 267-274. |
[15] | CHEN Zhili, GAO Hao, PAN Yixuan, XING Feng. Review of Computer Aided Diagnosis Technology in Mammography [J]. Computer Engineering and Applications, 2022, 58(4): 1-21. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||