Computer Engineering and Applications ›› 2022, Vol. 58 ›› Issue (5): 50-65.DOI: 10.3778/j.issn.1002-8331.2109-0393
• Research Hotspots and Reviews • Previous Articles Next Articles
ZHAO Zhenzhen, DONG Yanru, CAO Hui, CAO Bin
Online:
2022-03-01
Published:
2022-03-01
赵珍珍,董彦如,曹慧,曹斌
ZHAO Zhenzhen, DONG Yanru, CAO Hui, CAO Bin. Research Status of Elderly Fall Detection Algorithms[J]. Computer Engineering and Applications, 2022, 58(5): 50-65.
赵珍珍, 董彦如, 曹慧, 曹斌. 老年人跌倒检测算法的研究现状[J]. 计算机工程与应用, 2022, 58(5): 50-65.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2109-0393
[1] United Nations Department of Economic and Social Affairs,Population Division.World population ageing 2020 highlights:living arrangements of older persons(ST/ESA/SER.A/451)[R/OL].(2021-07-24)[2021-11-04].www.un.org/development/desa/pd/. [2] GE Y F,WANG L J,FENG W M,et al.The challenge and strategy selection of healthy aging in China[J].Journal of Management World,2020,36:86-95. [3] BRUNJES D L,KENNEL P J,SCHULZE P C.Exercise capacity,physical activity,and morbidity[J].Heart Failure Reviews,2017,22(2):133-139. [4] DALAL N,TRIGGS B.Histograms of oriented gradients for human detection[C]//Proc of the Computer Vision and Pattern Recognition,2005:886-893. [5] RUBLEE E,RABAUD V,KONOLIGE K,et al.ORB:an efficient alternative to SIFT or SURF[C]//IEEE International Conference on Computer Vision,Barcelona,Spain,November 6-13,2011. [6] WANG X,HAN T X,YAN S.An HOG-LBP human detector with partial occlusion handling[C]//IEEE International Conference on Computer Vision,Kyoto,Japan,2009:32-39. [7] MUBASHIR M,SHAO L,SEED L.A survey on fall detection:principles and approaches[J].Neurocomputing,2013,100:144-152. [8] BET P,CASTRO P C,PONTI M A.Fall detection and fall risk assessment in older person using wearable sensors:a systematic review[J].International Journal of Medical Informatics,2019,130:103946. [9] ZHANG Z,CONLY C,ATHITSOS V.A survey on vision-based fall detection[C]//the 8th ACM International Conference,New York,NY,USA,2015:1-7. [10] CAI Z,HAN J,LIU L,et al.RGB-D datasets using microsoft kinect or similar sensors:a survey[J].Multimedia Tools & Applications,2017,76(3):4313-4355. [11] GUTIéRREZ J,RODRíGUEZ V,MARTIN S.Comprehensive review of vision-based fall detection systems[J].Sensors,2021,21(3):947. [12] LUQUE R.Comparison and characterization of android-based fall detection systems[J].Sensors,2014,14(10):18543-18574. [13] LIMA W S.Human activity recognition using inertial sensors in a smartphone:an overview[J].Sensors,2019,19(14):3213. [14] GONZáLEZ-CAETE F J, CASILARI E.A feasibility study of the use of smartwatches in wearable fall detection systems[J].Sensors,2021,21(6):2254. [15] PERRY J,KELLOG S,VAIDYA S,et al.Survey and evaluation of real-time fall detection approaches[C]//Proceeding of the 2009 6th International Symposium on High-capacity Optical Networks and Enabling Technolo-gies(HONET),2009:158-164. [16] DELAHOZ Y,LABRADOR M.Survey on fall detection and fall prevention using wearable and external sensors[J].Sensors,2014,14(10):19806. [17] RAMACHANDRAN A,KARUPPIAH A.Survey on recent advances in wearable fall detection systems[J].BioMed Research International,2020:1-17. [18] USMANI S.Latest research trends in fall detection and prevention using machine learning:a systematic review[J].Sensors,2021,21(15):5134. [19] ISLAM M M,TAYAN O,ISLAM M R,et al.Deep learning based systems developed for fall detection:a review[J].IEEE Access,2020,8:166117-166137. [20] 周燕,刘紫琴,曾凡智,等.深度学习的二维人体姿态估计综述[J].计算机科学与探索,2021,15(4):641-657. ZHOU Y,LIU Z Q,ZENG F Z,et al,Survey on two-dimensional human pose estimation of deep learning[J].Journal of Frontiers of Computer Science and Technology,2021,15(4):641-657. [21] WANG X,ELLUL J,AZZOPARDI G.Elderly fall detection systems:a literature survey[J].Frontiers in Robotics and AI,2020,7:71. [22] SUN J,WANG Z,PEI B,et al.Fall detection using plantar inclinometer sensor[C]//Ubiquitous Intelligence & Computing & IEEE Intl Conf on Autonomic & Trusted Computing & IEEE Intl Conf on Scalable Computing & Communications & Its Associated Workshops,Beijing,China,2016:1692-1697. [23] NASIYA P M.A wearable device for fall detection elderly people using tri dimensional accelerometer[C]//International Seminar on Intelligent Technology & Its Applications,Lombok,Indonesia,2017:671-674. [24] WENG W X,LO S C.Fall detection based on tilt angle and acceleration variations[C]//Trustcom/BigDatasE/ISPA,Tianjin,China,2017:1712-1717. [25] YUAN L,NAN W,LV C,et al.Human body fall detection based on the Kinect sensor[C]//2015 8th International Congress on Image and Signal Processing(CISP),Shenyang,China,2015:367-371. [26] 马宗方,李静,曹陇鑫.基于Kinect传感器的跌倒行为的检测与分析[J].激光与光电子学进展,2020,57(21):88-92. MA Z F,LI J,CAO L X.Fall behavior detection and analysis using a Kinect sensor[J].Laser & Optoelectronics Progress,2020,57(21):88-92. [27] WANG C,NARAYANAN M R,LORD S R,et al.A low-power fall detection algorithm based on triaxial acceleration and barometric pressure[J].IEEE Eng Med Biol Soc,2014:570-573. [28] HU Y,ZHANG F,WU C,et al.A WiFi-based passive fall detection system[C]//2020 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP),Barcelona,Spain,2020:1723-1727. [29] OZDEMIR A,BARSHAN B.Detecting falls with wearable sensors using machine learning techniques[J].Sensors,2014,14(6):10691. [30] MROZEK D,KOCZUR A,MAYSIAK-MROZEK B.Fall detection in older adults with mobile IoT devices and machine learning in the cloud and on the edge[J].Information Sciences,2020,537(5):132-147. [31] DHOLE S R,KASHYAP A,DANGWAL A N,et al.A novel helmet design and implementation for drowsiness and fall detection of workers on-site using EEG and random-forest classifier[J].Procedia Comput Sci,2019,151:947-952. [32] RAMIREZ H,VELASTIN S,FABREGAS E,et al.Fall detection using human skeleton features[C]//11th International Conference on Pattern Recognition Systems(ICPRS’21),2021:33532-33542. [33] THAKUR N,HAN C Y.A study of fall detection in assisted living:identifying and improving the optimal machine learning method[J].Journal of Sensor and Actuator Networks,2021,10(3):39. [34] LEU F Y,KO C Y,LIN Y C,et al.Fall detection and motion classification by using decision tree on mobile phone-ScienceDirect[J].Smart Sensors Networks,2017:205-237. [35] HARRIS A,TRUE H,HU Z,et al.Fall recognition using wearable technologies and machine learning algorithms[C]//2016 IEEE International Conference on Big Data(Big Data),Washington,DC,USA,2016:3974-3976. [36] NGUYEN L P,SALEH M,JEANNèS R L B.An efficient design of a machine learning-based elderly fall detector[C]//International Conference on IoT Technologies for Healthcare.Cham:Springer,2017:34-41. [37] BOURKE A K,KLENK J,SCHWICKERT L,et al.Fall detection algorithms for real-world falls harvested from lumbar sensors in the elderly population:a machine learning approach[C]//Engineering in Medicine & Biology Society,Orlando,FL,USA,2016:3712-3715. [38] KUMAR V,BADAL N,MISHRA R.Elderly fall due to drowsiness:detection and prevention using machine learning and IOT[J].Modern Physics Letters B,2021,35(7):2150120. [39] PALMERINI L,KLENK J,BECKER C,et al.Accelerometer-based fall detection using machine learning:training and testing on real-world falls[J].Sensors,2020,20(22):6479. [40] KIM T H,CHOI A,HEO H M,et al.Machine learning-based pre-impact fall detection model to discriminate various types of fall[J].Journal of Biomechanical Engineering,2019,141(8):081010. [41] DIRACO G,LEONE A,SICILIANO P.Radar sensing technology for fall detection under near real-life conditions[C]//IET International Conference on Technologies for Active & Assisted Living,London,UK,2016:1-6. [42] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proc of the Computer Vision and Pattern Recognition,Columbus,OH,2014:580-587. [43] YU M,GONG L,KOLLIAS S.Computer vision based fall detection by a convolutional neural network[C]//the 19th ACM International Conference,New York,NY,2017:416-420. [44] CAMEIRO S A,DA SILVA G P,LEITE G V,et al.Multi-stream deep convolutional network using high-level features applied to fall detection in video sequences[C]//2019 International Conference on Systems,Signals and Image Processing(IWSSIP),Osijek,Croatia,2019:293-298. [45] YHDEGO H,AUDETTE M,LI J.Towards musculoskeletal simulation-aware fall injury mitigation:transfer learning with deep CNN for fall detection[C]//2019 Spring Simulation Conference,2019:1-12. [46] ABDULAZIZ A,ALWADAIN A.Killer heuristic optimized convolution neural network-based fall detection with wearable IoT sensor devices[J].Measurement,2021,167:108258. [47] LIN T Y,DOLLAR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2017:936-944. [48] SINGH B,DAVIS L S.An analysis of scale invariance in object detection-SNIP[C]//Proceedings of IEEE Confer-ence on Computer Vision and Pattern Recognition,2018:3578-3587. [49] DAI J,QI H,XIONG Y,et al.Deformable convolutional networks[C]//International Conference on Computer Vision,Venice,2017:764-773. [50] ZHANG Q,ZHU S.Real-time activity and fall risk detection for aging population using deep learning[C]//2018 9th IEEE Annual Ubiquitous Computing,Electronics & Mobile Communication Conference(UEMCON),2018:1055-1059. [51] SADREAZAMI H,BOLIC M,RAJAN S.Fall detection using standoff radar-based sensing and deep convolutional neural network[J].IEEE Transactions on Circuits and Systems II:Express Briefs,2020,67(1):197-201. [52] XIA Y,ZHANG J,YE Q,et al.Evaluation of deep convolutional neural networks for detection of freezing of gait in Parkinson’s disease patients-ScienceDirect[J].Biomedical Signal Processing and Control,2018,46:221-230. [53] WANG S,CHEN L,ZHOU Z,et al.Human fall detection in surveillance video based on PCANet[J].Multimedia Tools and Applications,2016,75(19):11603-11613. [54] Nú?EZ-MARCOS A,AZKUNE G,ARGANDA-CARRERAS I.Vision-based fall detection with convolutional neural networks[J].Wireless Communications and Mobile Computing,2017,2017:1-16. [55] HNOOHOM N,JITPATT ANAKUL A,INLUERGSRI P,et al.Multi-sensor-based fall detection and activity daily living classification by using ensemble learning[C]//Proc Int ECTI Northern Sect Conf Electr Electron Comput Telecommun Eng(ECTI-NCON),2018:111-115. [56] CHHETRI S,ALSADOON A,IN T,et al.Deep learning for vision-based fall detection system:enhanced optical dynamic flow[J].Computational Intelligence,2021,37:578-595. [57] KAMBLE K P,SONTAKKE S S,DONADKAR H,et al.Fall alert:a novel approach to detect fall using base as a YOLO object detection[C]//International Conference on Advanced Machine Learning Technologies and Applications.Singapore:Springer,2021:15-24. [58] SOOMRO K,ZAMIR A R,SHAH M.UCF101:a dataset of 101 human actions classes from videos in the wild[J].arXiv:1212.0402,2012. [59] THEODORIDIS T,SOLACHIDIS V,VRETOS N,et al.Human fall detection from acceleration measurements using a recurrent neural network[C]//ICBHI 2017:Precision Medicine Powered by pHealth and Connected Health.Berlin,Germany:Springer,2018:145-149. [60] HWANG S,AHN D H,PARK H,et al.Maximizing accuracy of fall detection and alert systems based on 3D convolutional neural network:poster abstract[C]//2017 IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation(IoTDI),Pittsburgh,PA,USA,2017:343-344. [61] YOON H J,RA H K,PARK T,et al.FADES:behavioral detection of falls using body shapes from 3D joint data[J].Journal of Ambient Intelligence and Smart Environments,2015,7(6):861-877. [62] LI S,XIONG H,DIAO X.Pre-impact fall detection using 3D convolutional neural network[C]//2019 IEEE 16th International Conference on Rehabilitation Robotics(ICORR),Toronto,ON,Canada,2019:1173-1178. [63] KASTURI S,FILONENKO A,JO H.Human fall recognition using the spatiotemporal 3D CNN[C]//IW-FCV2018,2019. [64] KIM D E,JEON B K,KWON D S.3D convolutional neural networks based fall detection with thermal camera[J].The Journal of Korea Robotics Society,2018,13(1):45-54. [65] FEICHTENHOFER C,PINZ A,ZISSERMAN A.Convolutional two-stream network fusion for video action recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,NV,USA,2016:1933-1941. [66] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409.1556v6,2014. [67] 袁智,胡辉.一种基于双流卷积神经网络跌倒识别方法[J].河南师范大学学报(自然科学版),2017,45(3):96-101. YUAN Z,HU H.A fall detection method based on two-stream convolutional neural network[J].Journal of Henan Normal University(Natural Science Edition),2017,45(3):96-101. [68] KHRAIEF C,BENZARTI F,AMIRI H.Elderly fall detection based on multi-stream deep convolutional networks[J].Multimedia Tools and Applications,2020,79(6):19537-19560. [69] ROUGIER C,MEUNIER J,ST-ARNAUD A,et al.Fall detection from human shape and motion history using video surveillance[C]//21st International Conference on Advanced Information Networking and Applications Workshops(AINAW’07),Niagara Falls,ON,Canada,2007:875-880. [70] MAULDIN T,CANBY M,METSIS V,et al.SmartFall:a smartwatch-based fall detection system using deep learning[J].Sensors,2018,18(10):3363. [71] ZHAO R,YAN R,CHEN Z,et al.Deep learning and its applications to machine health monitoring[J].Mechanical Systems and Signal Processing,2019,115:213-237. [72] GE C J,GU I Y H,YANG J,et al.Co-saliency-enhanced deep recurrent convolutional networks for human fall detection in E-Healthcare[C]//Annual International Conference of the IEEE Engineering in Medicine and Biology Society,2018:213-237. [73] TARAMASCO C,RODENAS T,MARTINEZ F,et al.A novel monitoring system for fall detection in older people[J].IEEE Access,2018:43563-43574. [74] LEE D W,JUN K,NAHEEM K,et al.Deep neural network based double-check method for fall detection using IMU-L sensor and RGB camera data[J].IEEE Access,2021:48064-48079. [75] DING J,WANG Y.A WiFi-based smart home fall detection system using recurrent neural network[J].IEEE Transactions on Consumer Electronics,2020,66(4):308-317. [76] SUN Y,HANG R,LI Z,et al.Privacy-preserving fall detection with deep learning on mmWave radar signal[C]//2019 IEEE Visual Communications and Image Processing(VCIP),2019:1-4. [77] WISESA I,MAHARDIKA G.Fall detection algorithm based on accelerometer and gyroscope sensor data using recurrent neural networks[J].IOP Conference Series:Earth and Environmental Science,2019,258(1):012035. [78] 郑毅,李凤,张丽,等.基于长短时记忆网络的人体姿态检测方法[J].计算机应用,2018,38(6):1568-1574. ZHENG Y,LI F,ZHANG L,et al.Human posture detection method based on long short term memory network[J].Journal of Computer Applications,2018,38(6):1568-1574. [79] KLENK J,SCHWICKERT L.The FARSEEING real-world fall repository:a large-scale collaborative database to collect and share sensor signals from real-world falls[J].European Review of Aging & Physical Activity,2016,13(1):8. [80] CHENG Z,QIN L.Human daily action analysis with multi-view and color-depth data[C]//European Conference on Computer Vision,2012:52-61. [81] CASILARI E,SANTOYO-RAMóN J A,CANO-GARCíA J M.UMAFall:a multisensor dataset for the research on automatic fall detection[J].Procedia Comput Sci,2017,110:32-39. [82] CHARTE D,CHARTE F,GARCíA,et al.A practical tutorial on autoencoders for nonlinear feature fusion:taxonomy,models,software and guidelines[J].Information Fusion,2017,44:78-96. [83] JOKANOVIC B,AMIN M,AHMAD F.Radar fall motion detection using deep learning[C]//2016 IEEE Radar Conference(RadarConf16),Philadelphia,PA,USA,2016:1-6. [84] DROGHINI D,FERRETTI D,PRINCIPI E,et al.An end-to-end unsupervised approach employing convolutional neural network autoencoders for human fall detection[C]//Italian Workshop on Neural Nets,2017:185-196. [85] ZHOU J,KOMURO T.Recognizing fall actions from videos using reconstruction error of variational autoencoder[C]//2019 IEEE International Conference on Image Processing(ICIP),Taipei,Taiwan,China,2019:3372-3376. [86] CAI X,LI S,LIU X,et al.Vision-based fall detection with multi-task Hourglass convolutional auto-encoder[J].IEEE Access,2020,8:44493-44502. [87] 李文阳,马行,穆春阳.基于Kinect V2的跌倒行为检测与分析[J].现代电子技术,2019,42(6):142-145. LI W Y,MA H,MU C Y.Detection and analysis on fall behavior based on Kinect V2[J].Modern Electronics Technique,2019,42(6):142-145. [88] 李京慧,迟宗涛,李钟晓.基于阈值分析法的人体跌倒检测系统[J].传感器与微系统,2019,38(8):80-82. LI J H,CHI Z T,LI Z X.Human fall detection system based on threshold analysis method[J].Transducer and Microsystem Technologies,2019,38(8):80-82. [89] WANG F T,CHAN H L,MING-HUNG H,et al.Threshold-based fall detection using a hybrid of tri-axial accelerometer and gyroscope[J].Physiological Measurement,2018,39(10):105002. [90] SHAHZAD A,KIM K.FallDroid:an automated smart-phone-based fall detection system using multiple kernel learning[J].IEEE Transactions on Industrial Informatics,2018,15(1):35-44. [91] TSINGANOS P,SKODRAS A.A smartphone-based fall detection system for the elderly[C]//International Symposium on Image & Signal Processing & Analysis,Ljubljana,Slovenia,2017:53-58. [92] NING Y,ZHANG S,NIE X,et al.Fall detection algorithm based on gradient boosting decision tree[C]//2019 IEEE International Conference on Signal Processing,Communications and Computing(ICSPCC),Piscataway,NJ,USA,2019. [93] PURUSHOTHAMAN A,VINEETHA K V,KURUP D G.Fall detection system using artificial neural network[C]//International Conference on Inventive Communication and Computational Technologies,Coimbatore,India,April 2018:1146-1149. [94] LOTFI A,ALBAWENDI S,POWELL H,et al.Supporting independent living for older adults;employing a visual based fall detection through analysing the motion and shape of the human Body[J].IEEE Access,2018,6:70272-70282. [95] THUC H L U,TUAN P V,HWANG J N.An effective video-based model for fall monitoring of the elderly[C]//International Conference on System Science and Engineering(ICSSE),Ho Chi Minh City,Vietnam,21-23 July,2017:48-52. [96] WU Y,XIAO Y,GE H.Fall detection monitoring system based on MEMS sensor[J].Journal of Physics:Conference Series,2020,1650(2):022037. [97] ALO U R,NWEKE H F,YING W T,et al.Smartphone motion sensor-based complex human activity identification using deep stacked autoencoder algorithm for enhanced smart healthcare system[J].Sensors,2020,20(21):6300. [98] LEE C M,PARK J,PARK S,et al.Fall-detection algorithm using plantar pressure and acceleration data[J]. International Journal of Precision Engineering and Manufacturing,2020,20(1):725-737. [99] HAI H X,THUC H L U.Cyclic HMM-based method for pathological gait recognition from side view gait video[J].Int J Adv Res Comput Eng Technol,2015,4(5):2171-2176. [100] PHAM V T.Development of a smart heaIthcare monitoring system based on video analysis[DB/OL].[2021-11-04].https://github.com/HBU/DataBase. [101] CHARFI I,MITERAN J,DUBOIS J,et al.Definition and performance evaluation of a robust SVM based fall detection solution[C]//Eighth International Conference on Signal Image Technology & Internet Based Systems,2012:218-224. [102] KONG X,MENG Z,MENG L,et al.A privacy protected fall detection IoT system for elderly persons using depth camera[C]//2018 International Conference on Advanced Mechatronic Systems(ICAMechS),Zhengzhou,China,2018:31-35. [103] 蔡文郁,郑雪晨,郭嘉豪,等.基于SVM-MultiCNN模型的视觉感知跌倒检测算法[J].杭州电子科技大学学报(自然科学版),2020,40(5):59-66. CAI W Y,ZHENG X C,GUO J H,et al.Visual perception fall detection algorithm based on SVM-Multi CNN model[J].Journal of Hangzhou Dianzi University(Natural Sciences),2020,40(5):59-66. [104] 刘峰,徐壮,干宗良,等.一种基于时序运动特征的RGB-D视频跌倒行为检测算法[J].南京邮电大学学报(自然科学版),2020,40(5):117-124. LIU F,XU Z,GAN Z L,et al.Fall detection algorithm based on temporal motion features in RGB-D videos[J].Journal of Nanjing University of Posts and Telecommunications(Natural Science Edition),2020,40(5):117-124. [105] 赵心驰,胡岸明,何为.基于卷积神经网络和XGBoost的摔倒检测[J].激光与光电子学进展,2020,57(16):248-256. ZHAO X C,HU A M,HE W.Fall detection based on convolutional neural network and XGBoost[J].Laser & Optoelectronics Progress,2020,57(16):248-256. [106] BOCHKOVSKIY A,WANG C Y,LIAO H.YOLOv4:optimal speed and accuracy of object detection[J].arXiv:2004.10934,2020. [107] LIE W N,LE A T,LIN G H.Human fall-down event detection based on 2D skeletons and deep learning approach[C]//2018 International Workshop on Advanced Image Technology(IWAIT),Chiang Mai,Thailand,2018:1-4. [108] TAO X,YUN Z.Fall prediction based on biomechanics equilibrium using Kinect[J].International Journal of Distributed Sensor Networks,2017,13(4):155014771770325. [109] TSAI T H,HSU C W.Implementation of fall detection system based on 3D skeleton for deep learning technique[C]//2019 IEEE 8th Global Conference on Consumer Electronics(GCCE),2019:153049-153059. [110] 曹建荣,吕俊杰,武欣莹,等.融合运动特征和深度学习的跌倒检测算法[J].计算机应用,2021,41(2):583-589. CAO J R,LYU J J,WU X Y,et al.Fall detection algorithm integrating motion features and deep learning[J].Journal of Computer Applications,2021,41(2):583-589. [111] LU N,WU Y,FENG L,et al.Deep learning for fall detection:three-dimensional CNN combined with LSTM on video kinematic data[J].IEEE Journal of Biomedical and Health Informatics,2019,23(1):314-323. [112] HSIEH Y Z,JENG Y L.Development of home intelligent fall detection IoT system based on feedback optical flow convolutional neural network[J].IEEE Access,2017,6:6048-6057. [113] 苏江毅,宋晓宁,吴小俊,等.多模态轻量级图卷积人体骨架行为识别方法[J].计算机科学与探索,2021,15(4):733-742. SU J Y,SONG X N,WU X J,et al.Skeleton based action recognition algorithm on multi-modal lightweight graph convolutional network[J].Journal of Frontiers of Computer Science and Technology,2021,15(4):733-742. |
[1] | WANG Yu, WANG Xin, ZHANG Shujuan, ZHENG Guoqiang, ZHAO Long, ZHENG Gaofeng. Research on Efficient Knowledge Fusion Method for Heterogeneous Big Data Environments [J]. Computer Engineering and Applications, 2022, 58(6): 142-148. |
[2] | LU Bingjie, LI Weizhuo, NA Chongning, NIU Zuoyao, CHEN Kui. Survey of Auto Insurance Fraud Detection with Machine Learning Models [J]. Computer Engineering and Applications, 2022, 58(5): 34-49. |
[3] | HUANG Yanqian, CHI Dongxiang, XU Lingling. Research on Few-Shot Learning Based on Embedding Learning [J]. Computer Engineering and Applications, 2022, 58(3): 34-49. |
[4] | RAN Rong, XU Xinghua, QIU Shaohua, CUI Xiaopeng, OUYANG Bin. Review of Crack Detection Methods Based on Deep Convolutional Neural Networks [J]. Computer Engineering and Applications, 2021, 57(9): 23-35. |
[5] | WEI Jihong, ZHENG Rongfeng, LIU Jiayong. Research on Malicious TLS Traffic Identification Based on Hybrid Neural Network [J]. Computer Engineering and Applications, 2021, 57(7): 107-114. |
[6] | ZHANG Xiaoli, ZHANG Kuixing, JIANG Mei, WEI Benzheng, CONG Jinyu. Review of Image Classification Technology for Lymphoma [J]. Computer Engineering and Applications, 2021, 57(6): 1-9. |
[7] | HAN Dongfang, Turdy Toheti, Askar Hamdulla. Survey on Question Classification Method in Question Answering System [J]. Computer Engineering and Applications, 2021, 57(6): 10-21. |
[8] | WAN Mengxiang, YAO Hanbing. GAN Model for Malicious Web Training Data Generation [J]. Computer Engineering and Applications, 2021, 57(6): 124-130. |
[9] | YANG Yemin, ZHANG Huijun, ZHANG Xiaolong. Research on Interpretable Visual Analysis Method of Random Forest [J]. Computer Engineering and Applications, 2021, 57(6): 168-175. |
[10] | XU Kewen, XU Bo, WU Ying, XU Haoran. Overview of Application of Machine Learning in Ultrasound Images [J]. Computer Engineering and Applications, 2021, 57(4): 11-17. |
[11] | WANG Zhendong, ZHANG Lin, LI Dahai. Survey of Intrusion Detection Systems for Internet of Things Based on Machine Learning [J]. Computer Engineering and Applications, 2021, 57(4): 18-27. |
[12] | LYU Pin, WU Qinjuan, XU Jia. Intelligent Analysis of Text Information Disclosure of Listed Companies [J]. Computer Engineering and Applications, 2021, 57(24): 1-13. |
[13] | ZHANG Yuxi, DUAN Zongtao, ZHU Yishui, WANG Luyang, ZHOU Yi, GUO Yu. Survey of Fuel Consumption Model for Motor Vehicle [J]. Computer Engineering and Applications, 2021, 57(24): 14-26. |
[14] | AN Weichao, YAN Ting, ZHANG Nan, ZHANG Shan, XIANG Jie, CAO Rui, WANG Bin. Application of Pathological Image Texture Analysis in MSI Prediction of Gastric Cancer [J]. Computer Engineering and Applications, 2021, 57(24): 205-211. |
[15] | WANG Fang, ZHANG Xueying, HU Fengyun, LI Fenglian. Ensemble Method Classifies EEG from Stroke Patients [J]. Computer Engineering and Applications, 2021, 57(24): 276-282. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||