Computer Engineering and Applications ›› 2022, Vol. 58 ›› Issue (5): 23-33.DOI: 10.3778/j.issn.1002-8331.2108-0266
• Research Hotspots and Reviews • Previous Articles Next Articles
CHEN Chaoyi, XU Bo, WU Ying, WU Kaiwen
Online:
2022-03-01
Published:
2022-03-01
陈朝一,许波,吴英,吴凯文
CHEN Chaoyi, XU Bo, WU Ying, WU Kaiwen. Overview of Research on Attention Mechanism in Medical Image Processing[J]. Computer Engineering and Applications, 2022, 58(5): 23-33.
陈朝一, 许波, 吴英, 吴凯文. 医学图像处理中的注意力机制研究综述[J]. 计算机工程与应用, 2022, 58(5): 23-33.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2108-0266
[1] GARGEYA R,LENG T.Automated identification of diabetic retinopathy using deep learning[J].Ophthalmology,2017,124(7):962-969. [2] CHUKWUEKE U N,WEN P Y.Use of the response assessment in neuro-oncology(RANO) criteria in clinical trials and clinical practice[J].CNS Oncology,2019,8(1):CNS28. [3] WULCZYN E,STEINER D F,XU Z,et al.Deep learning-based survival prediction for multiple cancer types using histopathology images[J].PLoS One,2020,15(6):e0233678. [4] HAN Y,YOO J,KIM H H,et al.Deep learning with domain adaptation for accelerated projection-reconstruction MR[J].Magnetic Resonance in Medicine,2018,80(3):1189-1205. [5] NIE D,TRULLO R,LIAN J,et al.Medical image synthesis with deep convolutional adversarial networks[J].IEEE Transactions on Biomedical Engineering,2018,65(12):2720-2730. [6] HAJI-VALIZADEH H,SHEN D,AVERY R J,et al.Rapid reconstruction of four-dimensional MR angiography of the thoracic aorta using a convolutional neural network[J].Radiology:Cardiothoracic Imaging,2020,2(3):e190205. [7] KANG E,CHANG W,YOO J,et al.Deep convolutional framelet denosing for low-dose CT via wavelet residual network[J].IEEE Transactions on Medical Imaging,2018,37(6):1358-1369. [8] GINSBURG G S,PHILLIPS K A.Precision medicine:from science to value[J].Health Affairs,2018,37(5):694-701. [9] 张可可,许永生,高雅,等.基于深度学习的影像组学在结直肠癌中的研究进展[J].磁共振成像,2021,12(3):112-115. ZHANG K K,XU Y S,GAO Y,et al.Advances in application of radiomics in colorectal cancer[J].Chinese Journal of Magnetic Resonance Imaging,2021,12(3):112-115. [10] 徐可文,许波,吴英,等.机器学习在超声图像中的应用综述[J].计算机工程与应用,2021,57(4):11-17. XU K W,XU B,WU Y,et al.Overview of application of machine learning in ultrasound images[J].Computer Engineering and Applications,2021,57(4):11-17. [11] LI Z,WANG Y,YU J,et al.Deep learning based radiomics(DLR) and its usage in noninvasive IDH1 prediction for low grade glioma[J].Scientific Reports,2017,7(1):1-11. [12] 孟凡奎,银温社,贺建峰.基于深度学习的眼底图像出血点检测方法[J].山东大学学报(理学版),2020,55(9):62-71. MENG F K,YIN W S,HE J F.Detection method of hemorrhages of fundus image based on deep learning[J].Journal of Shandong University(Natural Science),2020,55(9):62-71. [13] ZHOU Z,SIDDIQUEE M M R,TAJBAKHSH N,et al.Unet++:a nested U-net architecture for medical image segmentation[M]//Deep learning in medical image analysis and multimodal learning for clinical decision support.Cham:Springer,2018:3-11. [14] 贡荣麟,施俊,王骏.面向乳腺超声图像分割的混合监督双通道反馈U-Net[J].中国图象图形学报,2020,25(10):2206-2217. GONG R L,SHI J,WANG J.Hybrid supervised dual-channel feedback U-Net for segmentation of breast ultrasound images[J].Journal of Image and Graphics,2020,25(10):2206-2217. [15] DE FAUW J,LEDSAM J R,ROMERA-PAREDES B,et al.Clinically applicable deep learning for diagnosis and referral in retinal disease[J].Nature Medicine,2018,24(9):1342-1350. [16] POPLIN R,VARADARAJAN A V,BLUMER K,et al.Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning[J].Nature Biomedical Engineering,2018,2(3):158-164. [17] RUDIE J D,RAUSCHECKER A M,XIE L,et al.Subspecialty-level deep gray matter differential diagnoses with deep learning and Bayesian networks on clinical brain MRI:a pilot study[J].Radiology:Artificial Intelligence,2020,2(5):e190146. [18] DORAN D,SCHULZ S,BESOLD T R.What does explainable AI really mean? A new conceptualization of perspectives[J].arXiv:1710.00794,2017. [19] 化盈盈,张岱墀,葛仕明.深度学习模型可解释性的研究进展[J].信息安全学报,2020,5(3):1-12. HUA Y Y,ZHANG D C,GE S M.Research progress in the interpretability of deep learning models[J].Journal of Cyber Security,2020,5(3):1-12. [20] LI W,JAFARI O H,ROTHER C.Deep object co-segmentation[C]//Asian Conference on Computer Vision.Cham:Springer,2018:638-653. [21] SELVARAJU R R,COGSWELL M,DAS A,et al.Grad-CAM:visual explanations from deep networks via gradient-based localization[J].International Journal of Computer Vision,2020,128(2):336-359. [22] ADEBAYO J,GILMER J,MUELLY M,et al.Sanity checks for saliency maps[J].arXiv:1810.03292,2018. [23] KOSIOREK A.神经网络中的注意力机制[J].机器人产业,2017(6):12-17. KOSIOREK A.Attention mechanisms in neural networks[J].Robot Industry,2017(6):12-17. [24] CHIOCCA E A,JOHN S Y,LUKAS R V,et al.Regulatable interleukin-12 gene therapy in patients with recurrent high-grade glioma:results of a phase 1 trial[J].Science Translational Medicine,2019,11(505):5680. [25] RAJPURKAR P,IRVIN J,BAGUL A,et al.Mura:large dataset for abnormality detection in musculoskeletal radiographs[J].arXiv:1712.06957,2017. [26] YAN K,WANG X,LU L,et al.DeepLesion:automated mining of large-scale lesion annotations and universal lesion detection with deep learning[J].Journal of Medical Imaging,2018,5(3):036501. [27] BAKR S,GEVAERT O,ECHEGARAY S,et al.A radiogenomic dataset of non-small cell lung cancer[J].Scientific Data,2018,5(1):1-9. [28] WANG X,PENG Y,LU L,et al.Chestx-ray8:hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:2097-2106. [29] LAMONTAGNE P J,BENZINGER T L S,MORRIS J C,et al.OASIS-3:longitudinal neuroimaging,clinical,and cognitive dataset for normal aging and Alzheimer disease[J].MedRxiv,2019. [30] 刘星,吴影,李洋,等.人工智能医疗器械应用中的伦理问题分析[J].中国临床药理学与治疗学,2021,26(6):695-699. LIU X,WU Y,LI Y,et al.Analysis of ethical issue in the application of artificial intelligence medical devices[J].Chinese Journal of Clinical Pharmacology and Therapeutics,2021,26(6):695-699. [31] RONNEBERGER O,FISCHER P,BROX T.U-net:convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2015:234-241. [32] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778. [33] HUANG G,LIU Z,VAN DER MAATEN L,et al.Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:4700-4708. [34] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2014:580-587. [35] BIEN N,RAJPURKAR P,BALL R L,et al.Deep-learning-assisted diagnosis for knee magnetic resonance imaging:development and retrospective validation of MRNet[J].PLoS Medicine,2018,15(11):e1002699. [36] PAUL H Y,WEI J,KIM T K,et al.Radiology “forensics”:determination of age and sex from chest radiographs using deep learning[J].Emergency Radiology,2021:1-6. [37] HWANG E J,NAM J G,LIM W H,et al.Deep learning for chest radiograph diagnosis in the emergency department[J].Radiology,2019,293(3):573-580. [38] CHENG C T,HO T Y,LEE T Y,et al.Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs[J].European Radiology,2019,29(10):5469-5477. [39] OH Y,PARK S,YE J C.Deep learning COVID-19 features on CXR using limited training data sets[J].IEEE Transactions on Medical Imaging,2020,39(8):2688-2700. [40] LI L,QIN L,XU Z,et al.Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest CT[J].Radiology,2020:200905. [41] PASA F,GOLKOV V,PFEIFFER F,et al.Efficient deep network architectures for fast chest X-ray tuberculosis screening and visualization[J].Sci Rep,2019,9:6268. [42] SMILKOV D,THORAT N,KIM B,et al.Smoothgrad:removing noise by adding noise[J].arXiv:1706.03825,2017. [43] SITAULA C,HOSSAIN M B.Attention-based VGG-16 model for COVID-19 chest X-ray image classification[J].Applied Intelligence,2021,51(5):2850-2863. [44] BA J,MNIH V,KAVUKCUOGLU K.Multiple object recognition with visual attention[J].arXiv:1412.7755,2014. [45] PESCE E,WITHEY S J,YPSILANTIS P P,et al.Learning to detect chest radiographs containing pulmonary lesions using visual attention networks[J].Medical Image Analysis,2019,53:26-38. [46] GUAN Q,HUANG Y,ZHONG Z,et al.Diagnose like a radiologist:attention guided convolutional neural network for thorax disease classification[J].arXiv:1801. 09927,2018. [47] HUANG J,ZHUO E,LI H,et al.Achieving accurate segmentation of nasopharyngeal carcinoma in MR images through recurrent attention[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2019:494-502. [48] BENTAIEB A,HAMARNEH G.Predicting cancer with a recurrent visual attention model for histopathology images[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2018:129-137. [49] MOMENI A,THIBAULT M,GEVAERT O.Deep recurrent attention models for histopathological image analysis[J].bioRxiv,2018:438341. [50] OKTAY O,SCHLEMPER J,FOLGOC L L,et al.Attention u-net:learning where to look for the pancreas[J].arXiv:1804.03999,2018. [51] SCHLEMPER J,OKTAY O,SCHAAP M,et al.Attention gated networks:learning to leverage salient regions in medical images[J].Medical Image Analysis,2019,53:197-207. [52] HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:7132-7141. [53] ABRAMOVA V,CLèRIGUES A,QUILES A,et al.Hemorrhagic stroke lesion segmentation using a 3D U-Net with squeeze-and-excitation blocks[J].Computerized Medical Imaging and Graphics,2021,90:101908. [54] ROY A G,NAVAB N,WACHINGER C.Concurrent spatial and channel “squeeze & excitation” in fully convolutional networks[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2018:421-429. [55] ZHANG J,JIANG Z,DONG J,et al.Attention gate ResU-Net for automatic MRI brain tumor segmentation[J].IEEE Access,2020,8:58533-58545. [56] 于金扣,余南南,于贺,等.基于多尺度层级化注意力模型的脑血肿分割算法[J].航天医学与医学工程,2021,34(1):44-51. YU J K,YU N N,YU H,et al.Segmentation algorithm of intracranial hematoma based on multi-scale hierarchical attention model[J].Space Medicine & Medical Engineering,2021,34(1):44-51. [57] SUN H,LI C,LIU B,et al.AUNet:attention-guided dense-upsampling networks for breast mass segmentation in whole mammograms[J].Physics in Medicine & Biology,2020,65(5):055005. [58] WANG H,WANG S,QIN Z,et al.Triple attention learning for classification of 14 thoracic diseases using chest radiography[J].Medical Image Analysis,2021,67:101846. [59] 胡屹杉,秦品乐,曾建潮,等.基于特征融合和动态多尺度空洞卷积的超声甲状腺分割网络[J].计算机应用,2021,41(3):891-897. HU Y S,QIN P L,ZENG J C,et al.Ultrasound thyroid segmentation network based on feature fusion and dynamic multi-scale dilated convolution[J].Journal of Computer Applications,2021,41(3):891-897. [60] WEI Z,SONG H,CHEN L,et al.Attention-based DenseUnet network with adversarial training for skin lesion segmentation[J].IEEE Access,2019,7:136616-136629. [61] NI Z L,BIAN G B,ZHOU X H,et al.Raunet:residual attention u-net for semantic segmentation of cataract surgical instruments[C]//International Conference on Neural Information Processing.Cham:Springer,2019:139-149. [62] 罗圣钦,陈金怡,李洪均.基于注意力机制的多尺度残差UNet实现乳腺癌灶分割[J/OL].计算机应用:1-6[2021-07-09].http://kns.cnki.net/kcms/detail/51.1307.TP.20210708. 1645.016.html. LUO S Q,CHEN J Y,LI H J.Multiscale residual UNet based on attention mechanism to realize breast cancer lesion segmentation[J/OL].Journal of Computer Applications:1-6[2021-07-09].http://kns.cnki.net/kcms/detail/51. 1307.TP.20210708.1645.016.html. [63] 郭宁,柏正尧.注意力机制下密集空洞卷积的肺部图像分割[J].中国图象图形学报,2021,26(9):2146-2155. GUO N,BO Z Y.The integration of attention mechanism and dense atrous convolution for lung image segmentation[J].Journal of Image and Graphics,2021,26(9):2146-2155. [64] 井杰,王蓓蕾,刘善荣.可解释人工智能在疾病诊疗中的应用[J].检验医学,2021,36(9):976-980. JING J,WANG B L,LIU S R.Explainable artificial intelligence in disease diagnosis and treatment[J].Laboratory Medicine,2021,36(9):976-980. [65] JIANG H,XU J,SHI R,et al.A multi-label deep learning model with interpretable grad-CAM for diabetic retinopathy classification[C]//2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society(EMBC),2020:1560-1563. [66] CAI C J,WINTER S,STEINER D,et al.“Hello AI”:uncovering the onboarding needs of medical practitioners for human-AI collaborative decision-making[J].Proceedings of the ACM on Human-Computer Interaction,2019,3(CSCW):1-24. [67] DRAELOS R L,CARIN L.HiResCAM:faithful location representation in visual attention for explainable 3D medical image classification[J].arXiv:2011.08891,2020. [68] GOTKOWSKI K,GONZALEZ C,BUCHER A,et al.M3d-CAM:a PyTorch library to generate 3D data attention maps for medical deep learning[J].arXiv:2007.00453,2020. [69] TOSUN A B,PULLARA F,BECICH M J,et al.Explainable AI(xAI) for anatomic pathology[J].Advances in Anatomic Pathology,2020,27(4):241-250. [70] 胡耿,蔡延光.新冠肺炎CT影像的DNN对抗攻击研究[J].计算机工程与应用,2022,58(1):152-157. HU G,CAI Y G.Research of DNN adversarial attack on COVID-19 CT image dataset[J].Computer Engineering and Applications,2022,58(1):152-157. [71] CHEN S,BORTSOVA G,JUáREZ A G U,et al.Multi-task attention-based semi-supervised learning for medical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2019:457-465. [72] WANG L,LIN Z Q,WONG A.COVID-Net:a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images[J].Scientific Reports,2020,10(1):1-12. |
[1] | LIU Wenting, LU Xinming. Research Progress of Transformer Based on Computer Vision [J]. Computer Engineering and Applications, 2022, 58(6): 1-16. |
[2] | CHEN Zuozan, XU Bing, DING Xiaojun, GAN Jingzhong. Natural Scene Text Recognition Based on Encoder-Decoder Framework with Dual Supervision Mechanism [J]. Computer Engineering and Applications, 2022, 58(6): 128-133. |
[3] | CAO Yukun, SUN Tao. Chinese Event Argument Extraction Based on GLSTM and Attention [J]. Computer Engineering and Applications, 2022, 58(6): 157-163. |
[4] | LI Yanchen, ZHANG Xiaojun, ZHANG Minglu, SHEN Liangyi. Object Detection in Autonomous Driving Scene Based on Improved Efficientdet [J]. Computer Engineering and Applications, 2022, 58(6): 183-191. |
[5] | SHU Yali, ZHANG Guowei, WANG Bo, XU Xiaokang. Field Weed Identification Method Based on Deep Connection Attention Mechanism [J]. Computer Engineering and Applications, 2022, 58(6): 271-277. |
[6] | TANG Hong, FAN Sen, TANG Fan , ZHU Longjiao. Recommendation Algorithm Combining Knowledge Graph and Attention Mechanism [J]. Computer Engineering and Applications, 2022, 58(5): 94-103. |
[7] | QIU Ye, SHAO Xiongkai, GAO Rong, WANG Chunzhi, LI Jing. Social Recommendation Algorithm Based on Attention Gated Neural Network [J]. Computer Engineering and Applications, 2022, 58(5): 112-118. |
[8] | ZHAO Hong, FU Zhaoyang, ZHAO Fan. Microblog Sentiment Analysis Based on BERT and Hierarchical Attention [J]. Computer Engineering and Applications, 2022, 58(5): 156-162. |
[9] | ZHANG Xinyue, JIANG Ailian. SSD Small Target Detection Algorithm Combining Feature Enhancement and Self-Attention [J]. Computer Engineering and Applications, 2022, 58(5): 247-255. |
[10] | LI Yongshang, MA Ronggui, ZHANG Meiyue. Traffic Monitoring Video Vehicle Volume Statistics Method Based on Improved YOLOv5s+DeepSORT [J]. Computer Engineering and Applications, 2022, 58(5): 271-279. |
[11] | WANG Jing, SUN Ziyun, GUO Ping, ZHANG Longmei. Improved Leukocyte Detection Algorithm of YOLOv5 [J]. Computer Engineering and Applications, 2022, 58(4): 134-142. |
[12] | HE Shan, YUAN Jiabin, LU Yaoyao. Research on Lip Reading Based on Visual Characteristics of Chinese Pronunciation [J]. Computer Engineering and Applications, 2022, 58(4): 157-162. |
[13] | LI Leiting, WU Guangli, GUO Zhenzhou. Video Summarization Generation Based on Self-attention Mechanism and Random Forest Regression [J]. Computer Engineering and Applications, 2022, 58(4): 198-205. |
[14] | TAN Xiandong, PENG Hui. Improved YOLOv5 Ship Target Detection in SAR Image [J]. Computer Engineering and Applications, 2022, 58(4): 247-254. |
[15] | YANG Xingrui, ZHAO Shouwei, ZHANG Ruxue, YANG Xingjun, TAO Yehui. BiLSTM_CNN Classification Model Based on Self-Attention and Residual Network [J]. Computer Engineering and Applications, 2022, 58(3): 172-180. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||