Computer Engineering and Applications ›› 2021, Vol. 57 ›› Issue (20): 64-72.DOI: 10.3778/j.issn.1002-8331.2105-0135

Previous Articles     Next Articles

Review of Attention Mechanism in Convolutional Neural Networks

ZHANG Chenjia, ZHU Lei, YU Lu   

  1. School of Communication Engineering, Army Engineering University of PLA, Nanjing 210007, China
  • Online:2021-10-15 Published:2021-10-21

卷积神经网络中的注意力机制综述

张宸嘉,朱磊,俞璐   

  1. 陆军工程大学 通信工程学院,南京 210007

Abstract:

Attention mechanism is widely used in deep learning tasks because of its excellent effect and plug and play convenience. This paper mainly focuses on convolution neural network, introduces various mainstream methods in the development process of convolution network attention mechanism, extracts and summarizes its core idea and implementation process, realizes each attention mechanism method, and makes comparative experiments and results analysis on the measured data of the same type of emitter equipment. According to the main ideas and experimental results, the research status and future development direction of attention mechanism in convolutional networks are summarized.

Key words: attention mechanism, convolutional neural network, development direction

摘要:

注意力机制因其优秀的效果与即插即用的便利性,在深度学习任务中得到了越来越广泛的应用。主要着眼于卷积神经网络,对卷积网络注意力机制发展过程中的各种主流方法进行介绍,并对其核心思想与实现过程进行提取与总结,同时对每种注意力机制方法进行实现,针对同型号辐射源设备实测数据进行对比实验与结果分析,并依据主流方法的思想与实验的结果总结并阐述了卷积网络中的注意力机制的研究现状与未来其发展方向。

关键词: 注意力机制, 卷积神经网络, 发展方向