Computer Engineering and Applications ›› 2018, Vol. 54 ›› Issue (1): 196-203.DOI: 10.3778/j.issn.1002-8331.1706-0114

Previous Articles     Next Articles

Improved ant colony optimization algorithm and its research on hyperspectral image classification

WANG Sihan1, WAN Youchuan1, WANG Mingwei1, GAO Xiong2   

  1. 1.School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
    2.Geophysical Exploration Academy of China Metallurgical Geology Bureau, Baoding, Hebei 071051, China
  • Online:2018-01-01 Published:2018-01-15

改进蚁群算法及其在高光谱影像分类中的研究

王偲晗1,万幼川1,王明威1,高  雄2   

  1. 1.武汉大学 遥感信息工程学院,武汉 430079
    2.中国冶金地质总局 地球物理勘查院,河北 保定 071051

Abstract: An Improved Binary Ant Colony Optimization(IBACO) algorithm is proposed, which combined with the initial heuristic information of Genetic Algorithm(GA) and the global optimization ability of Binary Ant Colony Optimization(BACO) algorithm to overcome the high dimensionality of hyperspectral image. In the proposed method, the results of GA are utilized as the initial heuristic information of BACO, and the ant path selection mechanism is improved to enhance the global optimization ability. On the other hand, texture feature is utilized to make full use of the spectral and spatial information, and the combination of spectral and texture can obtain higher classification accuracy. Experimental results illustrate that the search ability of IBACO is better than GA, ACO, BACO. Meanwhile, the classification accuracy by using the proposed technique has reached 95.63%. In all, the proposed method can effectively enhance the classification efficiency and classification accuracy.

Key words: hyperspectral image classification, Improved Binary Ant Colony Optimization(IBACO) algorithm, band selection, spectral feature, texture feature

摘要: 针对高光谱影像波段数目多,易造成维数灾难的问题,结合遗传算法提供的初始启发信息和蚁群算法寻优能力的优势,提出一种基于改进二进制蚁群算法的波段选择方法。该方法通过遗传算法寻优获取几组较优解,经过计算后作为二进制蚁群算法的初始启发式信息,利用二进制蚁群算法的全局搜索获取最优解;另一方面,为充分利用影像的光谱与空间信息,将波段组合的光谱特征与改进二进制蚁群算法选择的纹理特征融合进行分类,可以获得更高的分类精度。实验结果表明,改进二进制蚁群算法与遗传算法、蚁群算法、二进制蚁群算法相比全局搜索能力更强,且该方法分类精度达到95.63%。

关键词: 高光谱影像分类, 改进二进制蚁群算法, 波段选择, 光谱特征, 纹理特征