Computer Engineering and Applications ›› 2019, Vol. 55 ›› Issue (19): 198-206.DOI: 10.3778/j.issn.1002-8331.1904-0143

Previous Articles     Next Articles

Hyperspectral Image Classification Based on Homogenous Region and Transfer Component Analysis

ZHAO Chanjuan, ZHOU Shaoguang, LIU Lili, DING Qian   

  1. School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China
  • Online:2019-10-01 Published:2019-09-30

基于同质区和迁移成分分析的高光谱图像分类

赵婵娟,周绍光,刘丽丽,丁倩   

  1. 河海大学 地球科学与工程学院,南京 211100

Abstract: As a classic algorithm, Transfer Component Analysis(TCA) has been applied in many different fields. However, due to the large matrix operations involved, TCA is not directly applied to the classification of remote sensing images. In this study, the traditional homogenization region information is used to improve the traditional transfer component analysis idea. A randomly selected point represents a target domain homogenous region to realize one process oftransfer component analysis and classification, and using the majority results of multiple classification as the common class of target domain homogenous region. Experiments on two sets of hyperspectral images demonstrate the effectiveness of the new method.

Key words: hyperspectral image classification, transfer learning, domain adaptation, image segmentation, homogenous region

摘要: 作为一种经典迁移学习算法,迁移成分分析(TCA)已在多种不同的领域得以应用。然而,由于涉及大的矩阵运算,TCA尚无法直接用于对遥感影像进行分类。该研究利用影像同质区信息对传统的迁移成分分析思想进行改进,以随机选取的一点代表一个目标域同质区斑块实现一次迁移成分分析及分类,用同一斑块中像素多次分类结果的众数作为目标域同质区斑块的共同类别。对两组高光谱图像的实验结果证明了该方法的有效性。

关键词: 高光谱图像分类, 迁移学习, 领域自适应, 图像分割, 同质区