
Computer Engineering and Applications ›› 2025, Vol. 61 ›› Issue (24): 68-85.DOI: 10.3778/j.issn.1002-8331.2503-0238
• Research Hotspots and Reviews • Previous Articles Next Articles
LYU Jiawei, LI Shaobin+, ZHU Ruolin
Online:2025-12-15
Published:2025-12-15
吕佳威,李绍彬+,朱若琳
LYU Jiawei, LI Shaobin, ZHU Ruolin. Review of Research on Visual Sign Language Translation Technology[J]. Computer Engineering and Applications, 2025, 61(24): 68-85.
吕佳威, 李绍彬, 朱若琳. 视觉手语翻译技术研究综述[J]. 计算机工程与应用, 2025, 61(24): 68-85.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2503-0238
| [1] World Health Organization. World report on hearing[EB/OL]. (2021-03-03) [2025-05-07]. https://cdn.who.int/media/docs/default-source/documents/health-topics/deafness-and-hearing-loss/world-report-on-hearing/wrh-exec-summary-ch.pdf. [2] 中国残联. 关于印发《第二期国家手语和盲文规范化行动计划(2021—2025年)》的通知[EB/OL]. (2021-12-09) [2025-05-07]. https://www.zgmx.org.cn/newsdetail/d-72564-0.html. China Disabled Persons’ Federation. Notice on issuing the “second phase national sign language and braille standardization action plan (2021—2025)”[EB/OL]. (2021-12-09) [2025-05-07]. https://www.zgmx.org.cn/newsdetail/d-72564-0.html. [3] 唐申庚. 基于深度学习的手语翻译与生成技术研究[D]. 合肥: 合肥工业大学, 2022. TANG S G. Research on deep learning based sign language translation and generation technology [D]. Hefei: Hefei University of Technology, 2022. [4] 冯时. 基于新型连续手语数据集的中国手语识别和翻译关键技术研究[D]. 天津: 天津理工大学, 2023. FENG S. Research on key technologies of Chinese sign language recognition and translation based on new continuous sign language dataset[D]. Tianjin: Tianjin University of Technology, 2023. [5] KOVA? I, MARáK P. Finger vein recognition: utilization of adaptive Gabor filters in the enhancement stage combined with SIFT/SURF-based feature extraction[J]. Signal, Image and Video Processing, 2023, 17(3): 635-641. [6] HU L Y, GAO L Q, LIU Z K, et al. Continuous sign language recognition with correlation network[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 2529-2539. [7] CAMGOZ N C, HADFIELD S, KOLLER O, et al. Neural sign language translation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7784-7793. [8] GROBEL K, ASSAN M. Isolated sign language recognition using hidden Markov models[C]//Proceedings of the 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation. Piscataway: IEEE, 1997: 162-167. [9] BRASHEAR H, HENDERSON V, PARK K H, et al. American sign language recognition in game development for deaf children[C]//Proceedings of the 8th International ACM SIGACCESS Conference on Computers and Accessibility. New York: ACM, 2006: 79-86. [10] VOGLER C, METAXAS D. A framework for recognizing the simultaneous aspects of American sign language[J]. Computer Vision and Image Understanding, 2001, 81(3): 358-384. [11] HUANG J, ZHOU W G, LI H Q, et al. Sign language recognition using 3D convolutional neural networks[C]//Proceedings of the 2015 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2015: 1-6. [12] CIHAN CAMG?Z N, KOLLER O, HADFIELD S, et al. Sign language transformers: joint end-to-end sign language recognition and translation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10020-10030. [13] FANG S, CHEN C, WANG L, et al. SignLLM: sign language production large language models[J]. arXiv:2405.10718, 2024. [14] VANBANG L E, 朱煜, 赵江坤, 等. 基于深度图像HOG特征的实时手势识别方法[J]. 华东理工大学学报(自然科学版), 2015, 41(5): 698-702. VANBANG L E, ZHU Y, ZHAO J K, et al. Real-time gesture recognition method based on depth image HOG features[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2015, 41(5): 698-702. [15] 王旋, 方河川, 常俪琼, 等. 基于RFID的免携带设备手势识别关键技术研究[J]. 计算机研究与发展, 2017, 54(12): 2752-2760. WANG X, FANG H C, CHANG L Q, et al. Research on key technologies of RFID based device free gesture recognition[J]. Journal of Computer Research and Development, 2017, 54(12): 2752-2760. [16] 王巍, 张慧静, 任相臻. 基于SVM的单手指语识别方法[J]. 计算机工程与设计, 2018, 39(10): 3234-3239. WANG W, ZHANG H J, REN X Z. Single finger language recognition method based on SVM[J]. Computer Engineering and Design, 2018, 39(10): 3234-3239. [17] ZHENG L H, LIANG B. Sign language recognition using depth images[C]//Proceedings of the 2016 14th International Conference on Control, Automation, Robotics and Vision. Piscataway: IEEE, 2016: 1-6. [18] OLIVEIRA M, SUTHERLAND A, FAROUK M. Two-stage PCA with interpolated data for hand shape recognition in sign language[C]//Proceedings of the 2016 IEEE Applied Imagery Pattern Recognition Workshop. Piscataway: IEEE, 2016: 1-4. [19] KOLLER O, FORSTER J, NEY H. Continuous sign language recognition: towards large vocabulary statistical recognition systems handling multiple signers[J]. Computer Vision and Image Understanding, 2015, 141: 108-125. [20] WANG H J, CHAI X J, CHEN X L. A novel sign language recognition framework using hierarchical Grassmann covariance matrix[J]. IEEE Transactions on Multimedia, 2019, 21(11): 2806-2814. [21] SAGGIO G, CAVALLO P, RICCI M, et al. Sign language recognition using wearable electronics: implementing k-nearest neighbors with dynamic time warping and convolutional neural network algorithms[J]. Sensors, 2020, 20(14): 3879. [22] PU J F, ZHOU W G, LI H Q. Sign language recognition with multi-modal features[C]//Advances in Multimedia Information Processing. Cham: Springer, 2016: 252-261. [23] LI Y N, MIAO Q G, TIAN K, et al. Large-scale gesture recognition with a fusion of RGB-D data based on the C3D model[C]//Proceedings of the 2016 23rd International Conference on Pattern Recognition. Piscataway: IEEE, 2016: 25-30. [24] RABINER L R. A tutorial on hidden Markov models and selected applications in speech recognition[J]. Proceedings of the IEEE, 1989, 77(2): 257-286. [25] MVLLER M. Dynamic time warping[M]//Information retrieval for music and motion. Berlin, Heidelberg: Springer, 2007: 69-84. [26] GRAVES A, FERNáNDEZ S, GOMEZ F, et al. Connectionist temporal classification: labelling unsegmented sequ-ence data with recurrent neural networks[C]//Proceedings of the 23rd International Conference on Machine Learning. New York: ACM, 2006: 369-376. [27] BAUER B, HIENZ H, KRAISS K F. Video-based continuous sign language recognition using statistical methods[C]//Proceedings of the 15th International Conference on Pattern Recognition. Piscataway: IEEE, 2000: 463-466. [28] ELAKKIYA R, SELVAMANI K. Subunit sign modeling framework for continuous sign language recognition[J]. Computers & Electrical Engineering, 2019, 74: 379-390. [29] YANG R D, SARKAR S, LOEDING B. Enhanced level bui-lding algorithm for the movement epenthesis problem in sign language recognition[C]//Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2007: 1-8. [30] MOLCHANOV P, YANG X D, GUPTA S, et al. Online detection and classification of dynamic hand gestures with recurrent 3D convolutional neural networks[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 4207-4215. [31] 吴金山, 黄子建, 陈小芳, 等. 基于改进CenterNet模型的快速珍稀植物识别[J/OL]. 林业科技通讯, 2025: 1-9(2025-04-15)[2025-05-08]. https://link.cnki.net/doi/10.13456/j.cnki.lykt. 2025.03.11.0002. WU J S, HUANG Z J, CHEN X F, et al. Rapid identific-ation of rare plants based on improved CenterNet model[J/OL]. Forest Science and Technology, 2025: 1-9(2025-04-15)[2025-05-08]. https://link.cnki.net/doi/10.13456/j.cnki.lykt.2025.03. 11.0002. [32] 郑雨帆, 王银涛, 孙琦. 基于轻量化深度网络的水下声呐目标识别方法[J/OL]. 指挥控制与仿真, 2025: 1-10 (2025-04-15)[2025-05-08]. https://kns.cnki.net/kcms/detail/32.1759.TJ.20250414. 1557.038.html. ZHENG Y F, WANG Y T, SUN Q. Underwater sonar target recognition method based on lightweight depth network[J/OL]. Command Control & Simulation, 2025: 1-10 (2025-04-15)[2025-05-08]. https://kns.cnki.net/kcms/detail/32.1759.TJ.20250414. 1557.038.html. [33] 刘威, 张成挺, 许高明, 等. 基于三维卷积神经网络和信道状态信息的人体动作识别[J]. 数据通信, 2024(3): 10-14. LIU W, ZHANG C T, XU G M, et al. Human action recognition based on 3DCNN and CSI[J]. Data Communications, 2024(3): 10-14. [34] ANGELIN BEULAH S, SIVAGAMI M. Comparative analysis of 2D and 3D convolutional neural networks for medical ultrasound image classification[J]. Journal of Image and Graphics. 2025, 13(1): 1-14. [35] PIGOU L, DIELEMAN S, KINDERMANS P J, et al. Sign language recognition using convolutional neural networks[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2015: 572-578. [36] PU J F, ZHOU W G, LI H Q. Dilated convolutional network with iterative optimization for continuous sign language recognition[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. New York: ACM, 2018: 885-891. [37] ADALOGLOU N, CHATZIS T, PAPASTRATIS I, et al. A com-prehensive study on deep learning-based methods for sign language recognition[J]. IEEE Transactions on Multimedia, 2021, 24: 1750-1762. [38] CHEN Y T, ZUO R L, WEI F Y, et al. Two-stream network for sign language recognition and translation[C]//Proceedings of the 36th International Conference on Neural Information Processing Systems. New York: ACM, 2022: 17043-17056. [39] GAO L Q, LI H B, LIU Z J, et al. RNN-transducer based Chinese sign language recognition[J]. Neurocomputing, 2021, 434: 45-54. [40] LI H B, GAO L Q, HAN R Z, et al. Key action and joint CTC-attention based sign language recognition[C]//Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2020: 2348-2352. [41] 位俊超, 陈春雨. 基于SAT-GCN的花样滑冰选手动作检测算法研究[J]. 应用科技, 2023, 50(1): 7-13. WEI J C, CHEN C Y. Research on motion detection algorithm of figure skaters based on SAT-GCN[J]. Applied Science and Technology, 2023, 50(1): 7-13. [42] WANG Z C, ZHANG J Q. Continuous sign language recognition based on multi-part skeleton data[C]//Proceedings of the 2021 International Joint Conference on Neural Networks. Piscataway: IEEE, 2021: 1-8. [43] LI R H, MENG L. Multi-view spatial-temporal network for continuous sign language recognition[J]. arXiv:2204.08747, 2022. [44] JIAO P Q, MIN Y C, LI Y N, et al. CoSign: exploring co-occurrence signals in skeleton-based continuous sign language recognition[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2024: 20619-20629. [45] HAO A M, MIN Y C, CHEN X L. Self-mutual distillation learning for continuous sign language recognition[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 11283-11292. [46] TUNGA A, NUTHALAPATI S V, WACHS J. Pose-based sign language recognition using GCN and BERT[C]//Proceedings of the 2021 IEEE Winter Conference on Applic-ations of Computer Vision Workshops. Piscataway: IEEE, 2021: 31-40. [47] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Advances in Neural Information Processing Systems, 2017. [48] 周振霄, 王华, 魏德健, 等. Transformer在医学图像分割中的研究进展[J]. 计算机工程与应用, 2025, 61(20): 54-74. ZHOU Z X, WANG H, WEI D J, et al. Research progress of Transformers in medical image segmentation[J]. Computer Engineering and Applications, 2025, 61(20): 54-74. [49] 陈广秋, 刘枫铭, 段锦, 等. 基于轻量化Transformer的车道线检测方法[J]. 华中科技大学学报(自然科学版), 2025, 53(3): 117-126. CHEN G Q, LIU F M, DUAN J, et al. Lane line detection method based on lightweight transformer[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2025, 53(3): 117-126. [50] 杨爱萍, 方思捷, 邵明福, 等. 基于Transformer的多尺度水下图像增强网络[J]. 东北大学学报(自然科学版), 2024, 45(12): 1696-1705. YANG A P, FANG S J, SHAO M F, et al. Transformer-based multi-scale underwater image enhancement network[J]. Journal of Northeastern University (Natural Science), 2024, 45(12): 1696-1705. [51] CAMGOZ N C, HADFIELD S, KOLLER O, et al. Sub-UNets: end-to-end hand shape and continuous sign language recognition[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 3075-3084. [52] ZHANG Z H, PU J F, ZHUANG L S, et al. Continuous sign language recognition via reinforcement learning[C]//Proceedings of the 2019 IEEE International Conference on Image Processing. Piscataway: IEEE, 2019: 285-289. [53] HU H Z, ZHAO W C, ZHOU W G, et al. SignBERT: pre-training of hand-model-aware representation for sign language recognition[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 11067-11076. [54] ZHOU H, ZHOU W G, ZHOU Y, et al. Spatial-temporal multi-cue network for continuous sign language recognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 13009-13016. [55] ZHOU B J, CHEN Z G, CLAPéS A, et al. Gloss-free sign language translation: improving from visual-language pretraining[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 20814-20824. [56] YIN K, READ J. Better sign language translation with STMC-transformer[C]//Proceedings of the 28th International Conference on Computational Linguistics. International Committee on Computational Linguistics, 2020: 5975-5989. [57] ZHOU H, ZHOU W G, ZHOU Y, et al. Spatial-temporal multi-cue network for sign language recognition and translation[J]. IEEE Transactions on Multimedia, 2022, 24: 768-779. [58] GUAN M, WANG Y, MA G K, et al. Multi-stream keypoint attention network for sign language recognition and translation[J]. arXiv:2405.05672, 2024. [59] 常钰坤, 曹港生, 马振九, 等. 基于PSO-LSTM模型的上肢动作识别方法[J]. 华东理工大学学报(自然科学版), 2024, 50(5): 760-769. CHANG Y K, CAO G S, MA Z J, et al. Upper limb motion recognition method based on PSO-LSTM model[J]. Journal of East China University of Science and Technology, 2024, 50(5): 760-769. [60] 卫青蓝, 罗天辰, 张远. 从跨媒体到跨空间: 情感计算的发展[J]. 信息传播研究, 2024, 31(6): 13-23. WEI Q L, LUO T C, ZHANG Y. From cross-media to cross-space: the development of affective computing[J]. Information and Communication Research, 2024, 31(6): 13-23. [61] AHN J, JANG Y, CHUNG J S. Slowfast network for continuous sign language recognition[C]//Proceedings of the 2024 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2024: 3920-3924. [62] GAN S W, YIN Y F, JIANG Z W, et al. Towards real-time sign language recognition and translation on edge devices[C]//Proceedings of the 31st ACM International Conference on Multimedia. New York: ACM, 2023: 4502-4512. [63] LIANG H, HUANG C Y, XU Y C, et al. LLaVA-SLT: visual language tuning for sign language translation[J]. arXiv:2412. 16524, 2024. [64] SIMONYAN K, ZISSERMAN A. Two-stream convolutional networks for action recognition in videos[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. New York: ACM, 2014: 568-576. [65] XIN W T, LIU R Y, LIU Y, et al. Transformer for Skeleton-based action recognition: a review of recent advances[J]. Neurocomputing, 2023, 537: 164-186. [66] KUMAR P, GAUBA H, PRATIM ROY P, et al. A multimodal framework for sensor based sign language recognition[J]. Neurocomputing, 2017, 259: 21-38. [67] JIANG S Y, SUN B, WANG L C, et al. Skeleton aware multi-modal sign language recognition[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2021: 3408-3418. [68] LIANG R H, OUHYOUNG M. A real-time continuous gesture recognition system for sign language[C]//Proceedings of the Third IEEE International Conference on Automatic Face and Gesture Recognition. Piscataway: IEEE, 1998: 558-567. [69] TUBAIZ N, SHANABLEH T, ASSALEH K. Glove-based continuous Arabic sign language recognition in user-dependent mode[J]. IEEE Transactions on Human-Machine Systems, 2015, 45(4): 526-533. [70] TUFFAHA M, SHANABLEH T, ASSALEH K. Novel feature extraction and classification technique for sensor-based continuous Arabic sign language recognition[C]//Proceedings of the 22nd International Conference on Neural Information Processing. Cham: Springer International Publishing, 2015: 290-299. [71] HASSAN S, SEITA M, BERKE L, et al. ASL-homework-RGBD dataset: an annotated dataset of 45 fluent and non-fluent signers performing American sign language homeworks[J]. arXiv:2207.04021, 2022. [72] HASSAN M, ASSALEH K, SHANABLEH T. Multiple proposals for continuous Arabic sign language recognition[J]. Sensing and Imaging, 2019, 20(1): 4. [73] TATENO S, LIU H B, OU J H. Development of sign language motion recognition system for hearing-impaired people using electromyography signal[J]. Sensors, 2020, 20(20): 5807. [74] SURI K, GUPTA R. Continuous sign language recognition from wearable IMUs using deep capsule networks and game theory[J]. Computers & Electrical Engineering, 2019, 78: 493-503. [75] SHARMA S, GUPTA R, KUMAR A. Continuous sign language recognition using isolated signs data and deep transfer learning[J]. Journal of Ambient Intelligence and Humanized Computing, 2023, 14(3): 1531-1542. [76] EKIZ D, KAYA G E, BU?UR S, et al. Sign sentence recognition with smart watches[C]//Proceedings of the 2017 25th Signal Processing and Communications Applications Conference. Piscataway: IEEE, 2017: 1-4. [77] ZHANG L, ZHANG Y X, ZHENG X L. WiSign: ubiquitous American sign language recognition using commercial Wi-Fi devices[J]. ACM Transactions on Intelligent Systems and Technology, 2020, 11(3): 1-24. [78] MENG X J, FENG L, YIN X, et al. Sentence-level sign language recognition using RF signals[C]//Proceedings of the 2019 6th International Conference on Behavioral, Economic and Socio-Cultural Computing. Piscataway: IEEE, 2019: 1-6. [79] YE L T, LAN S C, ZHANG K, et al. EM-sign: a non-contact recognition method based on 24 GHz Doppler radar for continuous signs and dialogues[J]. Electronics, 2020, 9(10): 1577. [80] MUKUSHEV M, UBINGAZHIBOV A, KYDYRBEKOVA A, et al. FluentSigners-50: a signer independent benchmark dataset for sign language processing[J]. PLoS One, 2022, 17(9): e0273649. [81] FANG B Y, CO J, ZHANG M. DeepASL: enabling ubiquitous and non-intrusive word and sentence-level sign language translation[C]//Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems. New York: ACM, 2017: 1-13. [82] MITTAL A, KUMAR P, ROY P P, et al. A modified LSTM model for continuous sign language recognition using leap motion[J]. IEEE Sensors Journal, 2019, 19(16): 7056-7063. [83] YANG S, ZHU Q. Video-based Chinese sign language recognition using convolutional neural network[C]//Proceedings of the 2017 IEEE 9th International Conference on Communication Software and Networks. Piscataway: IEEE, 2017: 929-934. [84] HISHAM B, HAMOUDA A. Supervised learning classifiers for Arabic gestures recognition using Kinect V2[J]. SN Applied Sciences, 2019, 1(7): 768. [85] STAMP R, COHN D, HEL-OR H, et al. Kinecting the dots: using motion-capture technology to distinguish sign language linguistic from gestural expressions[J]. Language and Speech, 2024, 67(1): 255-276. [86] ATHITSOS V, NEIDLE C, SCLAROFF S, et al. The American sign language lexicon video dataset[C]//Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2008: 1-8. [87] COOPER H, ONG E J, PUGEAULT N, et al. Sign language recognition using sub-units[M]//Gesture recognition. Cham: Springer International Publishing, 2017: 89-118. [88] OSZUST M, WYSOCKI M. Polish sign language words recognition with Kinect[C]//Proceedings of the 2013 6th International Conference on Human System Interactions. Piscataway: IEEE, 2013: 219-226. [89] SCHEMBRI A, FENLON J, RENTELIS R, et al. Building the British sign language corpus[J]. Language Document-ation & Conservation, 2013(7): 136-154. [90] CHAI X, WANG H, CHEN X. The devisign large vocabulary of Chinese sign language database and baseline evalu-ations: VIPL-TR-14-SLR-001[R]. Beijing: Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), 2014. [91] ESCALERA S, BARó X, GONZàLEZ J, et al. ChaLearn looking at people challenge 2014: dataset and results[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2014: 459-473. [92] ZHANG J H, ZHOU W G, XIE C, et al. Chinese sign language recognition with adaptive HMM[C]//Proceedings of the 2016 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2016: 1-6. [93] LIU T, ZHOU W G, LI H Q. Sign language recognition with long short-term memory[C]//Proceedings of the 2016 IEEE International Conference on Image Processing. Piscataway: IEEE, 2016: 2871-2875. [94] GUTIERREZ-SIGUT E, COSTELLO B, BAUS C, et al. LSE-sign: a lexical database for spanish sign language[J]. Behavior Research Methods, 2016, 48(1): 123-137. [95] JOZE H R V, KOLLER O. MS-ASL: a large-scale data set and benchmark for understanding American sign language[J]. arXiv:1812.01053, 2018. [96] JOHNSTON T. From archive to corpus: transcription and ann-otation in the creation of signed language corpora[J]. International Journal of Corpus Linguistics, 2010, 15(1): 106-131. [97] YANG S, JUNG S, KANG H, et al. The Korean sign language dataset for action recognition[C]//Proceedings of the International Conference on Multimedia Modeling. Cham: Springer, 2020: 532-542. [98] CHENG K L, YANG Z Y, CHEN Q F, et al. Fully convolutional networks for continuous sign language recognition[C]//Proceedings of the European Conference on Computer Vision. New York: ACM, 2020: 697-714. [99] LI D X, OPAZO C R, YU X, et al. Word-level deep sign language recognition from video: a new large-scale dataset and methods comparison[C]//Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2020: 1448-1458. [100] ALBANIE S, VAROL G, MOMENI L, et al. BSL-1K: sca-ling up co-articulated sign language recognition using mou-thing cues[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2020: 35-53. [101] ?ZDEMIR O, KINDIRO?LU A A, CAMG?Z N C, et al. BosphorusSign22k sign language recognition dataset[J]. arXiv:2004.01283, 2020. [102] SINCAN O M, KELES H Y. AUTSL: a large scale multi-modal Turkish sign language dataset and baseline methods[J]. IEEE Access, 2020, 8: 181340-181355. [103] SRIDHAR A, GANESAN R G, KUMAR P, et al. INCLUDE: a large scale dataset for Indian sign language recognition[C]//Proceedings of the 28th ACM International Conference on Multimedia. New York: ACM, 2020: 1366-1375. [104] TAVELLA F, SCHLEGEL V, ROMEO M, et al. WLASL-LEX: a dataset for recognising phonological properties in American sign language[J]. arXiv:2203.06096, 2022. [105] SIDIG A A I, LUQMAN H, MAHMOUD S, et al. KArSL: Arabic sign language database[J]. ACM Transactions on Asian and Low-Resource Language Information Processing, 2021, 20(1): 1-19. [106] RONCHETTI F, QUIROGA F M, ESTREBOU C, et al. LSA64: an Argentinian sign language dataset[J]. arXiv:2310. 17429, 2023. [107] NUZHDIN A, NAGAEV A, SAUTIN A, et al. HaGRIDv2: 1M images for static and dynamic hand gesture recognition[J]. arXiv: 2412.01508, 2024. [108] DREUW P, FORSTER J, DESELAERS T, et al. Efficient approximations to model-based joint tracking and recogn-ition of continuous sign language[C]//Proceedings of the 2008 8th IEEE International Conference on Automatic Face & Gesture Recognition. Piscataway: IEEE, 2008: 1-6. [109] BULL H, BRAFFORT A, GOUIFFES M. MEDIAPI-SKEL-a 2D-skeleton video database of french sign language with aligned french subtitles[C]//Proceedings of the Twelfth Language Resources and Evaluation Conference. Paris: ELRA, 2020: 6063-6068. [110] FORSTER J, SCHMIDT C A, KOLLER O, et al. Extensions of the sign language recognition and translation corpus RWTH-PHOENIX-weather[C]//Proceedings of the International Conference on Language Resources and Evaluation, 2014. [111] VIITANIEMI V, JANTUNEN T, SAVOLAINEN L, et al. S-pot-a benchmark in spotting signs within continuous signing[C]//Proceedings of the 9th International Conference on Language Resources and Evaluation(LREC). Paris: ELRA, 2014. [112] HUANG J, ZHOU W G, ZHANG Q L, et al. Video-based sign language recognition without temporal segmentation[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018. [113] KO S K, KIM C J, JUNG H, et al. Neural sign language translation based on human keypoint estimation[J]. Applied Sciences, 2019, 9(13): 2683. [114] DUARTE A, PALASKAR S, VENTURA L, et al. How2Sign: a large-scale multimodal dataset for continuous American sign language[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 2734-2743. [115] ZHOU H, ZHOU W G, QI W Z, et al. Improving sign language translation with monolingual data by sign back-translation[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 1316-1325. [116] ALBANIE S, VAROL G, MOMENI L, et al. BBC-Oxford British sign language dataset[J]. arXiv:2111.03635, 2021. [117] DAL BIANCO P, RíOS G, RONCHETTI F, et al. LSA-T: the first continuous Argentinian sign language dataset for sign language translation[C]//Advances in Artificial Intelligence. Cham: Springer International Publishing, 2022: 293-304. [118] UTHUS D, TANZER G, GEORG M. YouTube-ASL: a large-scale, open-domain American sign language-English parallel corpus[J]. arXiv:2306.15162, 2023. [119] JOSHI A, AGRAWAL S, MODI A. ISLTranslate: dataset for translating Indian sign language[J]. arXiv:2307.05440, 2023. [120] NIU Z, ZUO R L, MAK B, et al. A Hong Kong sign language corpus collected from sign-interpreted TV news[J]. arXiv:2405.00980, 2024. [121] KIM W, KIM T Y, KIM B, et al. Korean disaster safety information sign language translation benchmark dataset[C]//Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation. Paris: ELRA, 2024: 9948-9953. [122] ZHU Q D, LI J, YUAN F, et al. A Chinese continuous sign language dataset based on complex environments[J]. arXiv: 2409.11960, 2024. [123] ZHANG P Y, YIN H, WANG Z R, et al. EvSign: sign language recognition and Translation with streaming events[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2024: 335-351. [124] VON AGRIS U, KRAISS K F. Towards a video corpus for signer-independent continuous sign language recognition[C]//Proceedings of the 7th International Workshop on Gesture in Human-Computer Interaction and Simulation, 2007. [125] ALISHZADE N, HASANOV J. AzSLD: Azerbaijani sign language dataset for fingerspelling, word, and sentence translation with baseline software[J]. Data in Brief, 2025, 58: 111230. [126] 郑璇. 手语数字人研发现状与思考[J]. 语言战略研究, 2024, 9(3): 17-28. ZHENG X. The development of signing avatars: current situation and reflections[J]. Chinese Journal of Language Policy and Planning, 2024, 9(3): 17-28. [127] BALTATZIS V, POTAMIAS R A, VERVERAS E, et al. Neural sign actors: a diffusion model for 3D sign language production from text[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 1985-1995. [128] NATARAJAN B, ELAKKIYA R. Dynamic GAN for high-quality sign language video generation from skeletal poses using generative adversarial networks[J]. Soft Computing, 2022, 26(23): 13153-13175. [129] DONG L, CHAUDHARY L, XU F, et al. SignAvatar: sign language 3D motion reconstruction and generation[C]//Proceedings of the 2024 IEEE 18th International Conference on Automatic Face and Gesture Recognition. Piscataway: IEEE, 2024: 1-10. |
| [1] | WANG Jing, LI Yunxia. Research on Stock Return Forecast by NS-FEDformer Model [J]. Computer Engineering and Applications, 2025, 61(9): 334-342. |
| [2] | LI Shuhui, CAI Wei, WANG Xin, GAO Weijie, DI Xingyu. Review of Infrared and Visible Image Fusion Methods in Deep Learning Frameworks [J]. Computer Engineering and Applications, 2025, 61(9): 25-40. |
| [3] | HAO Hefei, ZHANG Longhao, CUI Hongzhen, ZHU Xiaoyue, PENG Yunfeng, LI Xianghui. Review of Application of Deep Neural Networks in Human Pose Estimation [J]. Computer Engineering and Applications, 2025, 61(9): 41-60. |
| [4] | CHEN Zhuo, LIU Dongqing, TANG Pinghua, HUANG Yan, ZHANG Wenxia, JIA Yan, CHENG Haifeng. Research Progress on Physical Adversarial Attacks for Target Detection [J]. Computer Engineering and Applications, 2025, 61(9): 80-101. |
| [5] | ZHOU Jiani, LIU Chunyu, LIU Jiapeng. Stock Price Trend Prediction Model Integrating Channel and Multi-Head Attention Mechanisms [J]. Computer Engineering and Applications, 2025, 61(8): 324-338. |
| [6] | ZHEN Tong, ZHANG Weizhen, LI Zhihui. Review of Classification Methods for Crop Structure in Remote Sensing Imagery [J]. Computer Engineering and Applications, 2025, 61(8): 35-48. |
| [7] | LI Tongwei, QIU Dawei, LIU Jing, LU Yinghang. Review of Human Behavior Recognition Based on RGB and Skeletal Data [J]. Computer Engineering and Applications, 2025, 61(8): 62-82. |
| [8] | WEN Hao, YANG Yang. Research on Clinical Short Text Classification by Integrating ERNIE with Knowledge Enhancement [J]. Computer Engineering and Applications, 2025, 61(8): 108-116. |
| [9] | WANG Yan, LU Pengyi, TA Xue. Normalized Convolutional Image Dehazing Network Combined with Feature Fusion Attention [J]. Computer Engineering and Applications, 2025, 61(8): 226-238. |
| [10] | XING Suxia, LI Kexian, FANG Junze, GUO Zheng, ZHAO Shihang. Survey of Medical Image Segmentation in Deep Learning [J]. Computer Engineering and Applications, 2025, 61(7): 25-41. |
| [11] | CHEN Yu, QUAN Jichuan. Camouflaged Object Detection:Developments and Challenges [J]. Computer Engineering and Applications, 2025, 61(7): 42-60. |
| [12] | ZHAI Huiying, HAO Han, LI Junli, ZHAN Zhifeng. Review of Research on Unmanned Aerial Vehicle Autonomous Inspection Algorithms for Railway Facilities [J]. Computer Engineering and Applications, 2025, 61(7): 61-80. |
| [13] | DMU-YOLO:Multi-Class Abnormal Behavior Detection Algorithm Based on Air-Borne Vision. DMU-YOLO:Multi-Class Abnormal Behavior Detection Algorithm Based on Air-Borne Vision [J]. Computer Engineering and Applications, 2025, 61(7): 128-140. |
| [14] | SHI Xin, WANG Haoze, JI Yi, MA Junyan. Multimodal Vehicle Trajectory Prediction Method with Fusion of Spatio-Temporal Features [J]. Computer Engineering and Applications, 2025, 61(7): 325-333. |
| [15] | WANG Wenju, TANG Bang, GU Zehua, WANG Sen. Overview of Multi-View 3D Reconstruction Techniques in Deep Learning [J]. Computer Engineering and Applications, 2025, 61(6): 22-35. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||