
Computer Engineering and Applications ›› 2025, Vol. 61 ›› Issue (24): 86-102.DOI: 10.3778/j.issn.1002-8331.2504-0043
• Research Hotspots and Reviews • Previous Articles Next Articles
DONG Yifan1,2+, SUN Wenli1,2, ZHAO Yang1,2, HUANG Pingping1,2
Online:2025-12-15
Published:2025-12-15
董亦凡1,2+,孙文礼1,2,赵洋1,2,黄平平1,2
DONG Yifan, SUN Wenli, ZHAO Yang, HUANG Pingping. Survey on Semi-Supervised Semantic Segmentation Methods for Remote Sensing Images[J]. Computer Engineering and Applications, 2025, 61(24): 86-102.
董亦凡, 孙文礼, 赵洋, 黄平平. 遥感图像半监督语义分割方法研究综述[J]. 计算机工程与应用, 2025, 61(24): 86-102.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2504-0043
| [1] ZHU F Z, CUI J Y, ZHU B, et al. Semantic segmentation of urban street scene images based on improved U-Net network[J]. Optoelectronics Letters, 2023, 19(3): 179-185. [2] AJIBOLA S, CABRAL P. A systematic literature review and bibliometric analysis of semantic segmentation models in land cover mapping[J]. Remote Sensing, 2024, 16(12): 2222. [3] ZHAO Y, WANG S C, LIU S Y, et al. Real time light-independent slope-failure monitoring using LiDAR and 2D-3D semantic segmentation[C]//Proceedings of the 2022 IEEE Sensors. Piscataway: IEEE, 2022: 1-4. [4] DU B W, ZHAO Z R, HU X, et al. Landslide susceptibility prediction based on image semantic segmentation[J]. Computers & Geosciences, 2021, 155: 104860. [5] 孙博远, 刘夏雷, 侯淇彬. 基于深度学习的半监督语义分割综述[J]. 北京交通大学学报, 2024, 48(2): 10-22. SUN B Y, LIU X L, HOU Q B. Review of deep learning-based semi-supervised semantic segmentation[J]. Journal of Beijing Jiaotong University, 2024, 48(2): 10-22. [6] 吴坚. 半监督的语义分割综述[J]. 电脑知识与技术, 2021, 17(32): 131-133. WU J. A survey of semi-supervised semantic segmentation[J]. Computer Knowledge and Technology, 2021, 17(32): 131-133. [7] 项伟康, 周全, 崔景程, 等. 基于深度学习的弱监督语义分割方法综述[J]. 中国图象图形学报, 2024, 29(5): 1146-1168. XIANG W K, ZHOU Q, CUI J C, et al. Weakly supervised semantic segmentation based on deep learning[J]. Journal of Image and Graphics, 2024, 29(5): 1146-1168. [8] RAN L Y, LI Y L, LIANG G Q, et al. Pseudo labeling methods for semi-supervised semantic segmentation: a review and future perspectives[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2025, 35(4): 3054-3080. [9] HAO S J, ZHOU Y, GUO Y R. A brief survey on semantic segmentation with deep learning[J]. Neurocomputing, 2020, 406: 302-321. [10] ZHANG M, ZHOU Y, ZHAO J Q, et al. A survey of semi- and weakly supervised semantic segmentation of images[J]. Artificial Intelligence Review, 2020, 53(6): 4259-4288. [11] LU H, LIU Q, LIU X D, et al. A survey of semantic construction and application of satellite remote sensing images and data[J]. Journal of Organizational and End User Computing, 2021, 33(6): 1-20. [12] YU A Z, QUAN Y J, YU R, et al. Deep learning methods for semantic segmentation in remote sensing with small data: a survey[J]. Remote Sensing, 2023, 15(20): 4987. [13] WANG X, JIN X Z, DAI Z, et al. Deep learning-based methods for road extraction from remote sensing images: a vision, survey, and future directions[J]. IEEE Geoscience and Remote Sensing Magazine, 2025, 13(1): 55-78. [14] HUANG L W, JIANG B T, LV S Y, et al. Deep-learning-based semantic segmentation of remote sensing images: a survey[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 8370-8396. [15] HE Y J, WANG J F, LIAO C H, et al. ClassHyPer: ClassMix-based hybrid perturbations for deep semi-supervised semantic segmentation of remote sensing imagery[J]. Remote Sensing, 2022, 14(4): 879. [16] ZHANG M M, XUE Y A, ZHAN Y Y, et al. Semi-supervised semantic segmentation-based remote sensing identification method for winter wheat planting area extraction[J]. Agronomy, 2023, 13(12): 2868. [17] MIAO W, XU Z, GENG J, et al. ECAE: edge-aware class activation enhancement for semisupervised remote sensing image semantic segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5625014. [18] XIN Y, FAN Z D, QI X Y, et al. Enhancing semi-supervised semantic segmentation of remote sensing images via feature perturbation-based consistency regularization methods[J]. Sensors, 2024, 24(3): 730. [19] XIAO R, WANG Y Z, TAO C. Fine-grained road scene understanding from aerial images based on semisupervised semantic segmentation networks[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 3001705. [20] WANG S W, SUN X, CHEN C R, et al. Semi-supervised semantic segmentation for remote sensing images via multiscale uncertainty consistency and cross-teacher student atten-tion[J]. IEEE Transactions on Geoscience and Remote Sen-sing, 2025, 63: 5517115. [21] LV L, ZHANG L F. Advancing data-efficient exploitation for semi-supervised remote sensing images semantic segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5619213. [22] CUI M T, LI K, LI Y L, et al. Semi-supervised semantic segmentation of remote sensing images based on dual cross-entropy consistency[J]. Entropy, 2023, 25(4): 681. [23] GUO Y J, WANG F, XIANG Y M, et al. Semisupervised sem-antic segmentation with certainty-aware consistency training for remote sensing imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 2900-2914. [24] BAI L B, WANG H Y, ZHANG X Y, et al. AP-semi: impro-ving the semi-supervised semantic segmentation for VHR images through adaptive data augmentation and prototypical sample guidance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5631813. [25] XIN Y, FAN Z D, QI X Y, et al. Confidence-weighted dual-teacher networks with biased contrastive learning for semi-supervised semantic segmentation in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5614416. [26] LU Y J, ZHANG Y J, CUI Z W, et al. Multi-dimensional manifolds consistency regularization for semi-supervised remote sensing semantic segmentation[J]. Knowledge-Based Systems, 2024, 299: 112032. [27] ZHANG B, ZHANG Y J, LI Y S, et al. Semi-supervised deep learning via transformation consistency regularization for remote sensing image semantic segmentation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 5782-5796. [28] YUN S, HAN D, CHUN S, et al. CutMix: regularization strategy to train strong classifiers with localizable features[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2020: 6022-6031. [29] OLSSON V, TRANHEDEN W, PINTO J, et al. ClassMix: segmentation-based data augmentation for semi-supervised learning[C]//Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 1368-1377. [30] ARAZO E, ORTEGO D, ALBERT P, et al. Pseudo-labeling and confirmation bias in deep semi-supervised learning[C]//Proceedings of the 2020 International Joint Conference on Neural Networks. Piscataway: IEEE, 2020: 1-8. [31] LI Y B, YI Z Y, WANG Y B, et al. Adaptive context transformer for semisupervised remote sensing image segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5621714. [32] QI X Y, MAO Y Q, ZHANG Y D, et al. PICS: paradigms integration and contrastive selection for semisupervised remote sensing images semantic segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5602119. [33] SUN X, SHI A J, HUANG H, et al. BAS-net: boundary-aware semi-supervised semantic segmentation network for very high resolution remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 5398-5413. [34] HAN W Q, JIANG W, GENG J, et al. Difference-complementary learning and label reassignment for multimodal semi-supervised semantic segmentation of remote sensing images[J]. IEEE Transactions on Image Processing, 2025, 34: 566-580. [35] LI L H, ZHANG W J, ZHANG X Y, et al. Semi-supervised remote sensing image semantic segmentation method based on deep learning[J]. Electronics, 2023, 12(2): 348. [36] SARPONG K, QIN Z, ADDO D, et al. Semi-supervised semantic segmentation in remote sensing images using active learning and deep global second order pooling network[C]//Proceedings of the 2023 20th International Computer Conference on Wavelet Active Media Technology and Information Processing. Piscataway: IEEE, 2024: 1-9. [37] CHEN J F, SUN B Y, WANG L Z, et al. Semi-supervised sema-ntic segmentation framework with pseudo supervisions for land-use/land-cover mapping in coastal areas[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 112: 102881. [38] GAO L P, ZHOU Y Q, TIAN J T, et al. MCMCNet: a semi-supervised road extraction network for high-resolution remote sensing images via multiple consistency and multitask constraints[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 4410416. [39] WANG J X, DING C H Q, CHEN S B, et al. Semi-supervised remote sensing image semantic segmentation via consistency regularization and average update of pseudo-label[J]. Remote Sensing, 2020, 12(21): 3603. [40] WANG J X, CHEN S B, DING C H Q, et al. RanPaste: paste consistency and pseudo label for semisupervised remote sensing image semantic segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 2002916. [41] ZHANG L J, YANG Z C, ZHOU G X, et al. MDMASNet: a dual-task interactive semi-supervised remote sensing image segmentation method[J]. Signal Processing, 2023, 212: 109152. [42] ZHENG Y L, YANG M Y, WANG M, et al. Semi-supervised adversarial semantic segmentation network using transformer and multiscale convolution for high-resolution remote sensing imagery[J]. Remote Sensing, 2022, 14(8): 1786. [43] ZHI H B, YANG B H, ZHU Y. Collaborative wheat lodging segmentation semi-supervised learning model based on RSE-BiSeNet using UAV imagery[J]. Agronomy, 2023, 13(11): 2772. [44] ZHANG L, TAN Z S, ZHENG Y Z, et al. A bias correction semi-supervised semantic segmentation framework for remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5604414. [45] FU Y J, WANG M Y, VIVONE G, et al. An alternating guidance with cross-view teacher student framework for remote sensing semi-supervised semantic segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 4402012. [46] GAO K L, YU A Z, YOU X, et al. Cross-domain multi-prototypes with contradictory structure learning for semi-supervised domain adaptation segmentation of remote sensing images[J]. Remote Sensing, 2023, 15(13): 3398. [47] YANG Z J, YAN Z Y, DIAO W H, et al. Label propagation and contrastive regularization for semisupervised semantic segmentation of remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5609818. [48] WANG J X, CHEN S B, DING C H Q, et al. Semi-supervised semantic segmentation of remote sensing images with iterative contrastive network[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 2504005. [49] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 28th Conference on Neural Information Processing Systems, 2014: 2672-2680. [50] CHEN H, LI Z H, WU J J, et al. SemiRoadExNet: a semi-supervised network for road extraction from remote sensing imagery via adversarial learning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 198: 169-183. [51] NIE W, GOU P, LIU Y, et al. A semi-supervised image segmentation method based on generative adversarial network[C]//Proceedings of the 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference. Piscataway: IEEE, 2022: 1217-1223. [52] WANG J Q, LIU B, ZHOU Y, et al. Semisupervised multiscale generative adversarial network for semantic segmentation of remote sensing image[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 8003805. [53] LI J H, SUN B, LI S T, et al. Semisupervised semantic segmentation of remote sensing images with consistency self-training[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5615811. [54] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. [55] LU W X, JIN J D, SUN X, et al. Semi-supervised semantic generative networks for remote sensing image segmentation[C]//Proceedings of the 2023 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE, 2023: 6386-6389. [56] JIN J D, LU W X, YU H F, et al. Dynamic and adaptive self-training for semi-supervised remote sensing image semantic segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5639814. [57] YU A Z, LIU B, CAO X F, et al. Pixel-level self-supervised learning for semi-supervised building extraction from remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 2507105. [58] JIANG Y, LU W X, GUO Z. Multi-stage semi-supervised transformer for remote sensing semantic segmentation with various data augmentation[C]//Proceedings of the 2023 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE, 2023: 6924-6927. [59] LU X Q, JIAO L C, LIU F, et al. Simple and efficient: a semisupervised learning framework for remote sensing image semantic segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5543516. [60] LUO Y, SUN B, LI S T, et al. Hierarchical augmentation and region-aware contrastive learning for semi-supervised semantic segmentation of remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 4401311. [61] ROTTENSTEINER F, SOHN G, GERKE M, et al. Results of the ISPRS benchmark on urban object detection and 3D building reconstruction[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93: 256-271. [62] ZAMIR S W, ARORA A, GUPTA A, et al. iSAID: a large-scale dataset for instance segmentation in aerial images[J]. arXiv:abs/1905.12886, 2019. [63] XIA G S, BAI X, DING J, et al. DOTA: a large-scale dataset for object detection in aerial images[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 3974-3983. [64] TONG X Y, XIA G S, LU Q K, et al. Land-cover classification with high-resolution remote sensing images using transferable deep models[J]. Remote Sensing of Environment, 2020, 237: 111322. [65] DEMIR I, KOPERSKI K, LINDENBAUM D, et al. DeepGlobe 2018: a challenge to parse the Earth through satellite images[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2018: 172-181. |
| [1] | LI Shuhui, CAI Wei, WANG Xin, GAO Weijie, DI Xingyu. Review of Infrared and Visible Image Fusion Methods in Deep Learning Frameworks [J]. Computer Engineering and Applications, 2025, 61(9): 25-40. |
| [2] | CHEN Zhuo, LIU Dongqing, TANG Pinghua, HUANG Yan, ZHANG Wenxia, JIA Yan, CHENG Haifeng. Research Progress on Physical Adversarial Attacks for Target Detection [J]. Computer Engineering and Applications, 2025, 61(9): 80-101. |
| [3] | LUO Yuxuan, WU Gaochang, GAO Ming. Remote Sensing Image Super-Resolution Network with Adaptive Convolution and Lightweight Transformer [J]. Computer Engineering and Applications, 2025, 61(9): 263-276. |
| [4] | WANG Jing, LI Yunxia. Research on Stock Return Forecast by NS-FEDformer Model [J]. Computer Engineering and Applications, 2025, 61(9): 334-342. |
| [5] | ZHEN Tong, ZHANG Weizhen, LI Zhihui. Review of Classification Methods for Crop Structure in Remote Sensing Imagery [J]. Computer Engineering and Applications, 2025, 61(8): 35-48. |
| [6] | LI Tongwei, QIU Dawei, LIU Jing, LU Yinghang. Review of Human Behavior Recognition Based on RGB and Skeletal Data [J]. Computer Engineering and Applications, 2025, 61(8): 62-82. |
| [7] | WEN Hao, YANG Yang. Research on Clinical Short Text Classification by Integrating ERNIE with Knowledge Enhancement [J]. Computer Engineering and Applications, 2025, 61(8): 108-116. |
| [8] | WANG Yan, LU Pengyi, TA Xue. Normalized Convolutional Image Dehazing Network Combined with Feature Fusion Attention [J]. Computer Engineering and Applications, 2025, 61(8): 226-238. |
| [9] | TIAN Yuan, ZHAO Mingfu, SONG Tao, XIONG Hailong, YE Dingxing, WANG Min. Global-Local Feature Aggregation for Real Point Cloud Semantic Segmentation [J]. Computer Engineering and Applications, 2025, 61(8): 260-266. |
| [10] | ZHOU Jiani, LIU Chunyu, LIU Jiapeng. Stock Price Trend Prediction Model Integrating Channel and Multi-Head Attention Mechanisms [J]. Computer Engineering and Applications, 2025, 61(8): 324-338. |
| [11] | XING Suxia, LI Kexian, FANG Junze, GUO Zheng, ZHAO Shihang. Survey of Medical Image Segmentation in Deep Learning [J]. Computer Engineering and Applications, 2025, 61(7): 25-41. |
| [12] | CHEN Yu, QUAN Jichuan. Camouflaged Object Detection:Developments and Challenges [J]. Computer Engineering and Applications, 2025, 61(7): 42-60. |
| [13] | ZHAI Huiying, HAO Han, LI Junli, ZHAN Zhifeng. Review of Research on Unmanned Aerial Vehicle Autonomous Inspection Algorithms for Railway Facilities [J]. Computer Engineering and Applications, 2025, 61(7): 61-80. |
| [14] | DMU-YOLO:Multi-Class Abnormal Behavior Detection Algorithm Based on Air-Borne Vision. DMU-YOLO:Multi-Class Abnormal Behavior Detection Algorithm Based on Air-Borne Vision [J]. Computer Engineering and Applications, 2025, 61(7): 128-140. |
| [15] | SHI Xin, WANG Haoze, JI Yi, MA Junyan. Multimodal Vehicle Trajectory Prediction Method with Fusion of Spatio-Temporal Features [J]. Computer Engineering and Applications, 2025, 61(7): 325-333. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||