[1] 闫超, 张雪英, 张静, 等. 结合注意力机制和特征融合1DCNN的脑电情感识别[J]. 计算机工程与应用, 2023, 59(13): 171-177.
YAN C, ZHANG X Y, ZHANG J, et al. EEG emotion recognition combined with attention mechanism and feature fusion 1DCNN[J]. Computer Engineering and Applications, 2023, 59(13): 171-177.
[2] ALARC?O S M, FONSECA M J. Emotions recognition using EEG signals: a survey[J]. IEEE Transactions on Affective Computing, 2019, 10(3): 374-393.
[3] LI R H, YANG D L, FANG F, et al. Concurrent fNIRS and EEG for brain function investigation: a systematic, methodology-focused review[J]. Sensors, 2022, 22(15): 5865.
[4] BLANCO R, KOBA C, CRIMI A. Investigating the interaction between EEG and fNIRS: a multimodal network analysis of brain connectivity[J]. Journal of Computational Science, 2024, 82: 102416.
[5] SAVRAN A, CIFTCI K, CHANEL G, et al. Emotion detection in the loop from brain signals and facial images[C]//Proceedings of the NTERFACE 2006 Workshop, 2006.
[6] RABBANI M H R, ISLAM S M R. Deep learning networks based decision fusion model of EEG and fNIRS for classification of cognitive tasks[J]. Cognitive Neurodynamics, 2024, 18(4): 1489-1506.
[7] NOUR M, ?ZTüRK ?, POLAT K. A novel classification framework using multiple bandwidth method with optimized CNN for brain computer interfaces with EEG-fNIRS signals[J]. Neural Computing and Applications, 2021, 33(22): 15815-15829.
[8] 刘晋瑞, 宋婷, 舒智林, 等. 一种面向运动解码的EEG-fNIRS时频特征融合与协同分类方法[J]. 仪器仪表学报, 2022, 43(7): 165-173.
LIU J R, SONG T, SHU Z L, et al. A time-frequency feature fusion and collaborative classification method for motion decoding with EEG-fNIRS signals[J]. Chinese Journal of Scientific Instrument, 2022, 43(7): 165-173.
[9] WU W W, CHEN D M, LI Q P. A two-stage multi-modal multi-label emotion recognition decision system based on GCN[J]. International Journal of Decision Support System Technology, 2024, 16(1): 1-17.
[10] AN J P, CAI Q, SUN X L, et al. Attention-based cross-frequency graph convolutional network for driver fatigue estimation[J]. Cognitive Neurodynamics, 2024, 18(5): 3181-3194.
[11] CHEN J F, YU K W, WANG F, et al. Temporal convolutional network-enhanced real-time implicit emotion recognition with an innovative wearable fNIRS-EEG dual-modal system[J]. Electronics, 2024, 13(7): 1310.
[12] 王璐, 梁明晶, 石慧宇, 等. 基于脑电时频空多域特征融合的情感识别研究[J]. 计算机工程与应用, 2023, 59(4): 191-196.
WANG L, LIANG M J, SHI H Y, et al. Research on emotion recognition based on EEG time-frequency-spatial multi-domain feature fusion[J]. Computer Engineering and Applications, 2023, 59(4): 191-196.
[13] LI Y, LIU Y, GUO Y Z, et al. Spatio-temporal-spectral hierarchical graph convolutional network with semisupervised active learning for patient-specific seizure prediction[J]. IEEE Transactions on Cybernetics, 2022, 52(11): 12189-12204.
[14] SCHOLKMANN F, KLEISER S, METZ A J, et al. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology[J]. NeuroImage, 2014, 85: 6-27.
[15] ZHANG G H, YU M J, LIU Y J, et al. SparseDGCNN: recognizing emotion from multichannel EEG signals[J]. IEEE Transactions on Affective Computing, 2023, 14(1): 537-548.
[16] DUAN R N, ZHU J Y, LU B L. Differential entropy feature for EEG-based emotion classification[C]//Proceedings of the 2013 6th International IEEE/EMBS Conference on Neural Engineering. Piscataway: IEEE, 2014: 81-84.
[17] BAO G C, YANG K, TONG L, et al. Linking multi-layer dynamical GCN with style-based recalibration CNN for EEG-based emotion recognition[J]. Frontiers in Neurorobotics, 2022, 16: 834952.
[18] 赵卿, 张雪英, 陈桂军, 等. 基于模态注意力图卷积特征融合的EEG和fNIRS情感识别[J]. 浙江大学学报(工学版), 2023, 57(10): 1987-1997.
ZHAO Q, ZHANG X Y, CHEN G J, et al. EEG and fNIRS emotion recognition based on modality attention graph convolution feature fusion[J]. Journal of Zhejiang University (Engineering Science), 2023, 57(10): 1987-1997.
[19] CHEN G J, LIU Y, ZHANG X Y. EEG fNIRS-based emotion recognition using graph convolution and capsule attention network[J]. Brain Sciences, 2024, 14(8): 820.
[20] ZHAO W, JIANG X L, ZHANG B C, et al. CTNet: a convolutional transformer network for EEG-based motor imagery classification[J]. Scientific Reports, 2024, 14: 20237.
[21] 谌鈫, 陈兰岚, 江润强. 集成胶囊网络的脑电情绪识别[J]. 计算机工程与应用, 2022, 58(8): 175-184.
CHEN Q, CHEN L L, JIANG R Q. Emotion recognition of EEG based on ensemble CapsNet[J]. Computer Engineering and Applications, 2022, 58(8): 175-184. |