Computer Engineering and Applications ›› 2025, Vol. 61 ›› Issue (11): 238-248.DOI: 10.3778/j.issn.1002-8331.2403-0252

• Pattern Recognition and Artificial Intelligence • Previous Articles     Next Articles

Fake News Detection in Multi-Domain and Multi-Modal Fusion Networks

JIAO Shiming, YU Kai   

  1. 1.College of Computer Science and Technology, Xinjiang University, Urumqi 830049, China
    2.School of Public Administration, Xinjiang University of Finance and Economics, Urumqi 830012, China
  • Online:2025-06-01 Published:2025-05-30

多领域多模态融合网络的虚假新闻检测

焦世明,于凯   

  1. 1.新疆大学 计算机科学与技术学院,乌鲁木齐 830049
    2.新疆财经大学 公共管理学院, 乌鲁木齐 830012

Abstract: The public is able to quickly obtain massive amounts of valuable information from the Internet, but it also facilitates the widespread dissemination of fake news. Therefore, it becomes very important to find and mark out fake news on social media, and the fast and accurate identification of fake news can effectively prevent the formation of negative online public opinion and reduce the adverse social impact. On the basis of the existing fake news recognition research, a multi-domain and multi-modal fusion network (DMMFN) for fake news detection is constructed. In the DMMFN model, the BERT model is used to convert the text content of the fake news into text vectors, and the CLIP is used to extract the feature information of the images. By considering the correlation and interaction between text and images, a multimodal fusion network is established. Two combined matrices are formed to promote information interaction and fusion between different modalities. A multi-domain classification is introduced so that multi-modal features of different events can be mapped to the same feature space. The performance of this model is tested on Twitter and Weibo datasets, and the experimental results demonstrate that the DMMFN model outperforms baseline models such as SIMPLE and CCD in terms of accuracy, precision and F1 scores.

Key words: fake news, BERT, CLIP, multimodal fusion, multi-domain classification

摘要: 公众能够从互联网快速获取海量有价值的信息,但也为虚假新闻的广泛和迅速传播提供了便利。因此,在社交媒体上发现并标记出虚假新闻变得非常重要,快速准确地识别出虚假新闻能够有效防止负面网络舆情的形成,减少不良社会影响。在现有虚假新闻识别研究基础上,构建了多领域多模态融合网络虚假新闻检测模型(DMMFN)。DMMFN模型中使用了BERT模型将虚假新闻的文本内容转换为文本向量,使用CLIP提取图片特征信息,考虑文本与图像相关性与交互性,建立一个多模态融合网络,组成的两个联合矩阵促进不同模态之间的信息交互和融合。引入一个多领域分类器,让不同事件的多模态特征可以映射到同一个特征空间中。在Twitter和Weibo数据集中测试了模型的性能,实验结果证明,DMMFN模型在accuracy、precision和F1分数上均优于SIMPLE、CCD等基线模型。

关键词: 虚假新闻, BERT, CLIP, 多模态融合, 多领域分类