[1] TOUVRON H, LAVRIL T, IZACARD G, et al. LLaMA: open and efficient foundation language models[J]. arXiv: 2302.13971, 2023.
[2] RADFORD A, NARASIMHAN K, SALIMANS T, et al. Improving language understanding by generative pre-training[J]. Computer Science, 2018: 49313245.
[3] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[4] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017: 5998-6008.
[5] LEWIS P, PEREZ E, PIKTUS A, et al. Retrieval-augmented generation for knowledge-intensive nlp tasks[C]//Advances in Neural Information Processing Systems, 2020: 9459-9474.
[6] GAO Y F, XIONG Y, GAO X Y, et al. Retrieval-augmented generation for large language models: a survey[J]. arXiv:2312.10997, 2023.
[7] YANG X, SUN K, XIN H, et al. CRAG: comprehensive RAG benchmark[J]. arXiv:2406.04744, 2024.
[8] LIU P F, YUAN W Z, FU J L, et al. Pre-train, prompt, and predict: a systematic survey of prompting methods in natural language processing[J]. ACM Computing Surveys, 2023, 55(9): 1-35.
[9] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[J]. arXiv:1810.04805, 2018.
[10] COLIN R, NOAM S, ADAM R, et al. Exploring the limits of transfer learning with a unified text-to-text transformer[J]. Journal of Machine Learning Research, 2020, 21(1): 5485-5551.
[11] BROWN T, MANN B, RYDER N, et al. Language models are few-shot learners[C]//Advances in Neural Information Processing Systems, 2020: 1877-1901.
[12] ACHIAM J, ADLER S, AGARWAL S, et al. GPT-4 technical report[J]. arXiv:2303.08774, 2023.
[13] ROBERTSON S E, WALKER S. On relevance weights with little relevance information[C]//Proceedings of the 20th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval-SIGIR’97. New York: ACM, 1997: 16-24.
[14] ROBERTSON S, ZARAGOZA H. The probabilistic relevance framework: bm25 and beyond[J]. Foundations and Trends? in Information Retrieval, 2009, 3(4): 333-389.
[15] KARPUKHIN V, O?UZ B, MIN S, et al. Dense passage retrieval for open-domain question answering[J]. arXiv: 2004.04906, 2020.
[16] ASAI A, WU Z Q, WANG Y Z, et al. Self-RAG: learning to retrieve, generate, and critique through self-reflection[J]. arXiv:2310.11511, 2023.
[17] WANG L, YANG N, WEI F R. Query2doc: query expansion with large language models[J]. arXiv:2303.07678, 2023.
[18] MA X B, GONG Y Y, HE P C, et al. Query rewriting for retrieval-augmented large language models[J]. arXiv:2305. 14283, 2023.
[19] SHI W J, MIN S, YASUNAGA M, et al. REPLUG: retrieval-augmented black-box language models[J]. arXiv:2301. 12652, 2023.
[20] ZHANG Y X, KHALIFA M, LOGESWARAN L, et al. Merging generated and retrieved knowledge for open-domain QA[J]. arXiv:2310.14393, 2023.
[21] 田永林, 王兴霞, 王雨桐, 等. RAG-PHI: 检索增强生成驱动的平行人与平行智能[J]. 智能科学与技术学报, 2024, 6(1): 41-51.
TIAN Y L, WANG X X, WANG Y T, et al. RAG-PHI: rag-driven parallel human and parallel intelligence[J]. Chinese Journal of Intelligent Science and Technology, 2024, 6(1): 41-51.
[22] 刘彦宏, 崔永瑞. 基于Word2Vec模型与RAG框架的医疗检索增强生成算法[J]. 人工智能与机器人研究, 2024(3): 479-486.
LIU Y H, CUI Y R. Enhanced generation algorithm for medical retrieval based on Word2Vec model and RAG framework[J]. Artificial Intelligence and Robotics Research, 2024(3): 479-486.
[23] KIM H J, CHO H, KIM J, et al. Self-generated in-context learning: leveraging auto-regressive language models as a demonstration generator[J]. arXiv:2206.08082, 2022.
[24] RAM O, LEVINE Y, DALMEDIGOS I, et al. In-context retrieval-augmented language models[J]. Transactions of the Association for Computational Linguistics, 2023, 11: 1316-1331.
[25] YU W H, ITER D, WANG S H, et al. Generate rather than retrieve: large language models are strong context generators[J].arXiv:2209.10063, 2022.
[26] KANG B, KIM J, YUN T R, et al. Prompt-RAG: pioneering vector embedding-free retrieval-augmented generation in niche domains, exemplified by Korean medicine[J].arXiv:2401.11246, 2024.
[27] WANG Y Q, YAO Q M, KWOK J T, et al. Generalizing from a few examples[J]. ACM Computing Surveys, 2021, 53(3): 1-34.
[28] WANG P F, WANG Z Y, LI Z, et al. SCOTT: self-consistent chain-of-thought distillation[J]. arXiv:2305.01879, 2023. |