
Computer Engineering and Applications ›› 2025, Vol. 61 ›› Issue (12): 1-11.DOI: 10.3778/j.issn.1002-8331.2409-0181
• Research Hotspots and Reviews • Previous Articles Next Articles
JI Xinmeng, ZAN Hongying, CUI Tingting, ZHANG Kunli
Online:2025-06-15
Published:2025-06-13
籍欣萌,昝红英,崔婷婷,张坤丽
JI Xinmeng, ZAN Hongying, CUI Tingting, ZHANG Kunli. Status and Challenges of Large Language Models Applications in Vertical Domains[J]. Computer Engineering and Applications, 2025, 61(12): 1-11.
籍欣萌, 昝红英, 崔婷婷, 张坤丽. 大模型在垂直领域应用的现状与挑战[J]. 计算机工程与应用, 2025, 61(12): 1-11.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2409-0181
| [1] RAIAAN M A K, MUKTA M S H, FATEMA K, et al. A review on large language models: architectures, applications, taxonomies, open issues and challenges[J]. IEEE Access, 2024, 12: 26839-26874. [2] WU T Y, HE S Z, LIU J P, et al. A brief overview of ChatGPT: the history, status quo and potential future development[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(5): 1122-1136. [3] ROUMELIOTIS K I, TSELIKAS N D. ChatGPT and Open-AI models: a preliminary review[J]. Future Internet, 2023, 15(6): 192. [4] GLM T, ZENG A H, et al. ChatGLM: a family of large language models from GLM-130B to GLM-4 all tools[J]. arXiv:2406.12793, 2024. [5] YANG A Y, XIAO B, WANG B N, et al. Baichuan 2: open large-scale language models[J]. arXiv:2309.10305, 2023. [6] 张钦彤, 王昱超, 王鹤羲, 等. 大语言模型微调技术的研究综述[J]. 计算机工程与应用, 2024, 60(17): 17-33. ZHANG Q T, WANG Y C, WANG H X, et al. Comprehensive review of large language model fine-tuning[J]. Computer Engineering and Applications, 2024, 60(17): 17-33. [7] 刘昆麟,屈新纪,谭芳,等 大语言模型对齐研究综述[J]. 电信科学, 2024, 40(6): 173-194. LIU K L, QU X J, TAN F, et al. Survey on large language models alignment research[J]. Telecommunications Science, 2024, 40(6): 173-194. [8] PAN J, RAZNIEWSKI S, KALO J C, et al. Large language models and knowledge graphs: opportunities and challenges[J]. arXiv:2308.06374, 2023. [9] NIE Y Q, KONG Y X, DONG X W, et al. A survey of large language models for financial applications: progress, prospects and challenges[J]. arXiv:2406.11903, 2024. [10] ZHOU H J, LIU F L, GU B Y, et al. A survey of large language models in medicine: progress, application, and challenge[J]. arXiv:2311.05112, 2023. [11] CHANG Y P, WANG X, WANG J D, et al. A survey on evaluation of large language models[J]. ACM Transactions on Intelligent Systems and Technology, 2024, 15(3): 1-45. [12] FANNI S C, FEBI M, AGHAKHANYAN G, et al. Natural language processing[M]//Introduction to artificial intelligence. Cham: Springer International Publishing, 2023: 87-99. [13] ERDEM E, KUYU M, YAGCIOGLU S, et al. Neural natural language generation: a survey on multilinguality, multimodality, controllability and learning[J]. Journal of Artificial Intelligence Research, 2022, 73: 1131-1207. [14] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521: 436-444. [15] SUN K L, LUO X D, LUO M Y. A survey ofPretrained language models[C]//Proceedings of the International Conference on Knowledge Science, Engineering and Management. Cham: Springer International Publishing, 2022: 442-456. [16] RANATHUNGA S, LEE E A, PRIFTI SKENDULI M, et al. Neural machine translation for low-resource languages: a survey[J]. ACM Computing Surveys, 2023, 55(11): 1-37. [17] ZHANG L L, LI Y F, WANG Q Y, et al. FPrompt-PLM: flexible-prompt on pretrained language model for continual few-shot relation extraction[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(12): 8267-8282. [18] BAO H, HE K, YIN X M, et al. BERT-based meta-learning approach with looking back for sentiment analysis of literary book reviews[C]//Proceedings of the 10th CCF International Conference on Natural Language Processing and Chinese Computing. Cham: Springer International Publishing, 2021: 235-247. [19] MAO R, LI X. Bridging towers of multi-task learning with a gating mechanism for aspect-based sentiment analysis and sequential metaphor identification[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 13534-13542. [20] SCHAEFFER R, MIRANDA B, KOYEJO S. Are emergent abilities of large language models a mirage?[J]. arXiv:2304. 15004, 2023. [21] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017: 5998-6008. [22] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 2019: 4171-4186. [23] TOUVRON H, LAVRIL T, IZACARD G, et al. LLaMA: open and efficient foundation language models[J]. arXiv:2302.13971, 2023. [24] COLIN R, NOAM S, ADAM R, et al. Exploring the limits of transfer learning with a unified text-to-text transformer[J]. Journal of Machine Learning Research, 2020, 21: 1-67. [25] DUBEYA, JAUHRI A, PANDEY A, et al. The LLaMA3 herd of models[J]. arXiv:2407.21783, 2024. [26] WORKSHOP B, LE SCAO T, et al. BLOOM: a 176B-parameter open-access multilingual language model[J]. arXiv:2211.05100, 2022. [27] PENEDO G, MALARTIC Q, HESSLOW D, et al. The refined web dataset for falcon LLM: outperforming curated corpora with web data, and web data only[J]. arXiv:2306. 01116, 2023. [28] YANG A, YANG B S, HUI B Y, et al. Qwen2 technical report[J]. arXiv:2407.10671, 2024. [29] CAI Z, CAO M S, CHEN H J, et al. InternLM2 technical report[J]. arXiv:2403.17297, 2024. [30] LIU P F, YUAN W Z, FU J L, et al. Pre-train, prompt, and predict: a systematic survey of prompting methods in natural language processing[J]. ACM Computing Surveys, 2023, 55(9): 1-35. [31] DONG Q X, LI L, DAI D M, et al. A survey on in-context learning[C]//Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2024: 1107-1128. [32] WEI J, WANG X, SCHUURMANS D, et al. Chain-of-thought prompting elicits reasoning in large language models[C]//Advances in Neural Information Processing Systems, 2022:24824-24837. [33] ZHOU D, SCH?RLI N, HOU L, et al. Least-to-most prompting enables complex reasoning in large language models[C]//Proceedings of the Eleventh International Conference on Learning Representations (ICLR 2023), 2023. [34] DING N, QIN Y J, YANG G, et al. Parameter-efficient fine-tuning of large-scale pre-trained language models[J]. Nature Machine Intelligence, 2023, 5(3): 220-235. [35] LI X L, LIANG P. Prefix-tuning: optimizing continuous prompts for generation[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2021: 4582-4597. [36] HU E J, SHEN Y, WALLIS P, et al. LoRA: low-rank adaptation of large language models[J]. arXiv:2106.09685, 2021. [37] REBUFFI S A, BILEN H, VEDALDI A. Learning multiple visual domains with residual adapters[C]//Advances in Neural Information Processing Systems, 2017: 506-516. [38] OUYANG L, WU J, XU J, et al. Training language models to follow instructions with human feedback[C]//Advances in Neural Information Processing Systems, 2022: 27730-27744. [39] ZHENG R, DOU S H, GAO S Y, et al. Secrets of RLHF in large language models part I: PPO[J]. arXiv:2307.04964, 2023. [40] LEWIS P, PEREZ E, PIKTUS A, et al. Retrieval-augmented generation for knowledge-intensive NLP tasks[C]//Advances in Neural Information Processing Systems, 2020: 9459-9474. [41] FEDUS W, ZOPH B, SHAZEER N. Switch transformers: scaling to trillion parameter models with simple and efficient sparsity[J]. Journal of Machine Learning Research, 2022, 23: 1-39. [42] JIANG A Q, SABLAYROLLES A, ROUX A, et al. Mixtral of experts[J]. arXiv:2401.04088, 2024. [43] LEPIKHIN D, LEE H, XU Y Z, et al. GShard: scaling giant models with conditional computation and automatic sharding[J]. arXiv:2006.16668, 2020. [44] DAI D M, DENG C Q, ZHAO C G, et al. DeepSeekMoE: towards ultimate expert specialization in mixture-of-experts language models[J]. arXiv:2401.06066, 2024. [45] LIU A, FENG B, XUE B, et al. DeepSeek-v3 technical report[J]. arXiv:2412.19437, 2024. [46] THIRUNAVUKARASU A J, TING D S J, ELANGOVAN K, et al. Large language models in medicine[J]. Nature Medicine, 2023, 29(8): 1930-1940. [47] WANG H C, LIU C, XI N W, et al. HuaTuo: tuning LLaMA model with Chinese medical knowledge[J]. arXiv:2304. 06975, 2023. [48] YANG S H, ZHAO H J, ZHU S B, et al. Zhongjing: enhancing the Chinese medical capabilities of large language model through expert feedback and real-world multi-turn dialogue[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2024: 19368-19376. [49] 陈龙飞, 高鑫, 侯皓天, 等. 生成式大语言模型在中文放射医学领域的应用研究[J]. 计算机科学与探索, 2024, 18(9): 2337-2348. CHEN L F, GAO X, HOU H T, et al. Application of generative large language models in Chinese radiology domain[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2337-2348. [50] LI Z M, ZHANG J W, LIN Q, et al. Hunyuan-DiT: a powerful multi-resolution diffusion transformer with fine-grained Chinese understanding[J]. arXiv:2405.08748, 2024. [51] LIN X Y, XU C, XIONG Z P, et al. PanGu Drug Model: learn a molecule like a human[J]. Science China Life Sciences, 2023, 66(4): 879-882. [52] YUE S B, LIU S J, ZHOU Y X, et al. LawLLM: intelligent legal system with legal reasoning and verifiable retrieval[C]//Proceedings of the International Conference on Database Systems for Advanced Applications. Singapore: Springer Nature Singapore, 2024: 304-321. [53] HUANG Q Z, TAO M X, ZHANG C, et al. Lawyer LLaMA technical report[J]. arXiv:2305.15062, 2023. [54] CUI J, LI Z, YAN Y, et al. ChatLaw: open-source legal large language model with integrated external knowledge bases[J]. arXiv:2306.16092, 2023. [55] CHEN W, WANG Q S, LONG Z F, et al. DISC-FinLLM: a Chinese financial large language model based on multiple experts fine-tuning[J]. arXiv:2310.15205, 2023. [56] YANG Y, TANG Y X, TAM K Y. InvestLM: a large language model for investment using financial domain instruction tuning[J]. arXiv:2309.13064, 2023. [57] WANG N, YANG H, WANG C. FinGPT: instruction tuning benchmark for open-source large language models in financial datasets[C]//Proceedings of the NeurIPS 2023 Workshop on Instruction Tuning and Instruction Following, 2023. [58] KASNECI E, SESSLER K, KüCHEMANN S, et al. Chat-GPT for good?On opportunities and challenges of large language models for education[J]. Learning and Individual Differences, 2023, 103: 102274. [59] DAN Y H, LEI Z K, GU Y Y, et al. EduChat: a large-scale language model-based chatbot system for intelligent education[J]. arXiv:2308.02773, 2023. [60] CHEN J Y, WU T, JI W, et al. WisdomBot: tuning large language models with artificial intelligence knowledge[J]. Frontiers of Digital Education, 2024, 1(2): 159-170. [61] WANG P, WEI X, HU F X, et al. TransGPT: multi-modal generative pre-trained transformer for transportation[J]. arXiv:2402.07233, 2024. [62] ZHU H, ZHANG W J, HUANG N X, et al. PlanGPT: enhancing urban planning with tailored language model and efficient retrieval[J]. arXiv:2402.19273, 2024. [63] 刘昕, 高会泉, 邵长恒, 等. 融合知识推理与相似度检索的民众诉求大模型构建与应用[J]. 计算机科学与探索, 2024, 18(11): 2940-2953. LIU X, GAO H Q, SHAO C H, et al. Construction and application of large language model for public complaints with knowledge reasoning and similarity retrieval[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(11): 2940-2953. [64] BANG Y J, CAHYAWIJAYA S, LEE N, et al. A multitask, multilingual, multimodal evaluation of ChatGPT on reasoning, hallucination, and interactivity[C]//Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics. Stroudsburg: ACL, 2023: 675-718. [65] ZHAO H Y, CHEN H J, YANG F, et al. Explainability for large language models: a survey[J]. ACM Transactions on Intelligent Systems and Technology, 2024, 15(2): 1-38. [66] KIRK H R, VIDGEN B, R?TTGER P, et al. The benefits, risks and bounds of personalizing the alignment of large language models to individuals[J]. Nature Machine Intelligence, 2024, 6(4): 383-392. |
| [1] | SHI Zhanglong, ZHOU Xi, WANG Zhen, MA Bo, YANG Yating. Event Argument Extraction via Multi-Task Enhanced Text Generation [J]. Computer Engineering and Applications, 2025, 61(9): 168-176. |
| [2] | REN Haiyu, LIU Jianping, WANG Jian, GU Xunxun, CHEN Xi, ZHANG Yue, ZHAO Changxu. Research on Intelligent Question Answering System Based on Large Language Model [J]. Computer Engineering and Applications, 2025, 61(7): 1-24. |
| [3] | JIANG Shuangwu, ZHANG Jiawei, HUA Liansheng, YANG Jinglin. Implementation of Meteorological Database Question-Answering Based on Large-Scale Model Retrieval-Augmentation Generation [J]. Computer Engineering and Applications, 2025, 61(5): 113-121. |
| [4] | XIAO Yu, XIAO Jing, LIN Guijin, NI Rongsen, XIAN Jiarong, YUAN Jibao. Construction and Study of Explainable Logical Reasoning Dataset [J]. Computer Engineering and Applications, 2025, 61(4): 114-121. |
| [5] | LIU Yue, LI Huayi, ZHANG Shijie, ZHANG Chao, ZHAO Xiangtian. Review of Initialization Technology for Visual-Inertial Navigation Systems [J]. Computer Engineering and Applications, 2025, 61(2): 1-18. |
| [6] | LIU Xueying, YUN Jing, LI Bo, SHI Xiaoguo, ZHANG Yuying. Survey of Retrieval-Augmented Generation Based on Large Language Models [J]. Computer Engineering and Applications, 2025, 61(13): 1-25. |
| [7] | JIA Zheyuan, JIN Fenglin, HE Yuan. Survey of Intelligent Traffic Offloading Technology in Space-Air-Ground Networks [J]. Computer Engineering and Applications, 2025, 61(13): 46-61. |
| [8] | WANG Tiejun, ZHANG Zeyu, GUO Xiaoran, WU Jiao. MCFA-UNet: Combining Multiscale Fusion and Attention for Image Generation Networks [J]. Computer Engineering and Applications, 2025, 61(12): 222-231. |
| [9] | MENG Xiangzhong, XIA Hongbin, LIU Yuan. Controllable Story Generation with Adaptive Knowledge Enhancement [J]. Computer Engineering and Applications, 2025, 61(12): 129-140. |
| [10] | HUANG Shiyang, XI Xuefeng, CUI Zhiming. Research and Exploration on Chinese Natural Language Processing in Era of Large Language Models [J]. Computer Engineering and Applications, 2025, 61(1): 80-97. |
| [11] | CHEN Zhaohong, HONG Zhiyong, YU Wenhua, ZHANG Xin. Extreme Multi-Label Text Classification Based on Balance Function [J]. Computer Engineering and Applications, 2024, 60(4): 163-172. |
| [12] | SU Yilei, LI Weijun, LIU Xueyang, DING Jianping, LIU Shixia, LI Haonan, LI Guanfeng. Review of Text Classification Methods Based on Graph Neural Networks [J]. Computer Engineering and Applications, 2024, 60(19): 1-17. |
| [13] | WANG Nan, TAN Shuru, XIE Xiaolan, LI Hairong. Pre-Training Model of Public Opinion Event Vector [J]. Computer Engineering and Applications, 2024, 60(18): 189-197. |
| [14] | ZHANG Qintong, WANG Yuchao, WANG Hexi, WANG Junxin, CHEN Hai. Comprehensive Review of Large Language Model Fine-Tuning [J]. Computer Engineering and Applications, 2024, 60(17): 17-33. |
| [15] | LI Minggui, ZHOU Huanyin, GONG Liwen. Comprehensive Review of ROV Underwater Obstacle Detection and Avoidance Technology [J]. Computer Engineering and Applications, 2024, 60(17): 34-47. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||