
Computer Engineering and Applications ›› 2025, Vol. 61 ›› Issue (18): 273-289.DOI: 10.3778/j.issn.1002-8331.2406-0023
• Network, Communication and Security • Previous Articles Next Articles
YAO Lifeng, CAI Manchun, ZHU Yi, CHEN Yonghao, ZHANG Yiwen
Online:2025-09-15
Published:2025-09-15
姚利峰,蔡满春,朱懿,陈咏豪,张溢文
YAO Lifeng, CAI Manchun, ZHU Yi, CHEN Yonghao, ZHANG Yiwen. Real-Time Classification of Encrypted Traffic Based on EfficientViT[J]. Computer Engineering and Applications, 2025, 61(18): 273-289.
姚利峰, 蔡满春, 朱懿, 陈咏豪, 张溢文. 基于EfficientViT的加密流量实时分类方法[J]. 计算机工程与应用, 2025, 61(18): 273-289.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2406-0023
| [1] REZAEI S, LIU X. Deep learning for encrypted traffic classification: an overview[J]. IEEE Communications Magazine, 2019, 57(5): 76-81. [2] VELAN P, ?ERMáK M, ?ELEDA P, et al. A survey of methods for encrypted traffic classification and analysis[J]. International Journal of Network Management, 2015, 25(5): 355-374. [3] 陈子涵, 程光, 徐子恒, 等. 互联网加密流量检测、分类与识别研究综述[J]. 计算机学报, 2023, 46(5): 1060-1085. CHEN Z H, CHENG G, XU Z H, et al. A survey on Internet encrypted traffic detection, classification and identification[J]. Chinese Journal of Computers, 2023, 46(5): 1060-1085. [4] YANG B W, LIU D. Research on network traffic identification based on machine learning and deep packet inspection[C]//Proceedings of the 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference. Piscataway: IEEE, 2019: 1887-1891. [5] ACETO G, CIUONZO D, MONTIERI A, et al. MIMETIC: mobile encrypted traffic classification using multimodal deep learning[J]. Computer Networks, 2019, 165: 106944. [6] ACETO G, CIUONZO D, MONTIERI A, et al. Toward effective mobile encrypted traffic classification through deep learning[J]. Neurocomputing, 2020, 409: 306-315. [7] BELIARD C, FINAMORE A, ROSSI D. Opening the deep pandora box: explainable traffic classification[C]//Proceedings of the IEEE Conference on Computer Communications Workshops. Piscataway: IEEE, 2020: 1292-1293. [8] LIU C, HE L T, XIONG G, et al. FS-net: a flow sequence network for encrypted traffic classification[C]//Proceedings of the IEEE Conference on Computer Communications. Piscataway: IEEE, 2019: 1171-1179. [9] LOTFOLLAHI M, JAFARI SIAVOSHANI M, SHIRALI HOSSEIN ZADE R, et al. Deep packet: a novel approach for encrypted traffic classification using deep learning[J]. Soft Computing, 2020, 24(3): 1999-2012. [10] NASCITA A, MONTIERI A, ACETO G, et al. XAI meets mobile traffic classification: understanding and improving multimodal deep learning architectures[J]. IEEE Transactions on Network and Service Management, 2021, 18(4): 4225-4246. [11] REZAEI S, KROENCKE B, LIU X. Large-scale mobile app identification using deep learning[J]. IEEE Access, 2019, 8: 348-362. [12] WANG X, CHEN S H, SU J S. Automatic mobile app identification from encrypted traffic with hybrid neural networks[J]. IEEE Access, 2020, 8: 182065-182077. [13] ACETO G, CIUONZO D, MONTIERI A, et al. Mobile encrypted traffic classification using deep learning: experimental evaluation, lessons learned, and challenges[J]. IEEE Transactions on Network and Service Management, 2019, 16(2): 445-458. [14] YANG L X, FINAMORE A, JUN F, et al. Deep learning and zero-day traffic classification: lessons learned from a commercial-grade dataset[J]. IEEE Transactions on Network and Service Management, 2021, 18(4): 4103-4118. [15] LIU X Y, PENG H W, ZHENG N X, et al. EfficientViT: memory efficient vision transformer with cascaded group attention[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 14420-14430. [16] HAN D, YE T, HAN Y, et al. Agent attention: on the integration of softmax and linear attention[J]. arXiv:2312.08874, 2023. [17] FAUVEL K, CHEN F X, ROSSI D. A lightweight, efficient and explainable-by-design convolutional neural network for Internet traffic classification[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2023: 4013-4023. [18] 侯剑, 鲁辉, 刘方爱, 等. 加密恶意流量检测及对抗综述[J]. 软件学报, 2024, 35(1): 333-355. HOU J, LU H, LIU F A, et al. Detection and countermeasure of encrypted malicious traffic: a survey[J]. Journal of Software, 2024, 35(1): 333-355. [19] VAN EDE T, BORTOLAMEOTTI R, CONTINELLA A, et al. FlowPrint: semi-supervised mobile-app fingerprinting on encrypted network traffic[C]//Proceedings 2020 Network and Distributed System Security Symposium, 2020. [20] ESTE A, GRINGOLI F, SALGARELLI L. Support vector machines for TCP traffic classification[J]. Computer Networks, 2009, 53(14): 2476-2490. [21] SUN G L, CHEN T, SU Y Y, et al. Internet traffic classification based on incremental support vector machines[J]. Mobile Networks and Applications, 2018, 23(4): 789-796. [22] ALSHAMMARI R, ZINCIR-HEYWOOD A N. Can encrypted traffic be identified without port numbers, IP addresses and payload inspection?[J]. Computer Networks, 2011, 55(6): 1326-1350. [23] DIAS K L, ALMEIDA PONGELUPE M, CAMINHAS W M, et al. An innovative approach for real-time network traffic classification[J]. Computer Networks, 2019, 158: 143-157. [24] WANG W, ZHU M, ZENG X W, et al. Malware traffic classification using convolutional neural network for representation learning[C]//Proceedings of the 2017 International Conference on Information Networking. Piscataway: IEEE, 2017: 712-717. [25] REN X M, GU H X, WEI W T. Tree-RNN: tree structural recurrent neural network for network traffic classification[J]. Expert Systems with Applications, 2021, 167: 114363. [26] LAN J H, LIU X D, LI B, et al. DarknetSec: a novel self-attentive deep learning method for darknet traffic classification and application identification[J]. Computers & Security, 2022, 116: 102663. [27] 冯景瑜, 王锦康, 张宝军, 等. 基于信任过滤的轻量级加密流量异常检测方案[J]. 西安邮电大学学报, 2023, 28(5): 56-66. FENG J Y, WANG J K, ZHANG B J, et al. Anomaly detection scheme of lightweight encrypted traffic based on trust filtering[J]. Journal of Xi’an University of Posts and Telecommunications, 2023, 28(5): 56-66. [28] 杨忠富, 常俊, 许妍, 等. 联合胶囊和双向LSTM网络的VPN加密流量识别[J]. 计算机工程与应用, 2023, 59(23): 246-253. YANG Z F, CHANG J, XU Y, et al. VPN encrypted traffic identification for joint capsule and bidirectional LSTM networks[J]. Computer Engineering and Applications, 2023, 59(23): 246-253. [29] 赵阳阳. 物联网加密流量多层次识别方法研究[D]. 北京: 北京交通大学, 2023. ZHAO Y Y. Research on multi-level identification method of encrypted traffic in Internet of Things[D]. Beijing: Beijing Jiaotong University, 2023. [30] 牟乔旭. 基于混合压缩和生成对抗网络的加密流量分类研究[D]. 长春: 吉林大学, 2023. MOU Q X. Research on encrypted traffic based on hybrid compression and generative adversarial networks[D]. Changchun: Jilin University, 2023. [31] 赵广龙. 基于深度学习的轻量化网络流量分类方法研究[D]. 哈尔滨: 黑龙江大学, 2023. ZHAO G L. Research on lightweight network traffic classification method based on deep learning[D]. Harbin: Heilongjiang University, 2023. [32] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017. [33] MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2018: 122-138. [34] HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1577-1586. [35] WANG C, FINAMORE A, YANG L X, et al. AppClassNet: a commercial-grade dataset for application identification research[J]. ACM SIGCOMM Computer Communication Review, 2022, 52(3): 19-27. [36] ACETO G, CIUONZO D, MONTIERI A, et al. MIRAGE: mobile-app traffic capture and ground-truth creation[C]//Proceedings of the 2019 4th International Conference on Computing, Communications and Security. Piscataway: IEEE, 2019: 1-8. [37] LUXEMBURK J, ?EJKA T. Fine-grained TLS services classification with reject option[J]. Computer Networks, 2023, 220: 109467. [38] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. [39] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. [40] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269. [41] WOO S, DEBNATH S, HU R H, et al. ConvNeXtV2: co-designing and scaling ConvNets with masked autoencoders[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 16133-16142. [42] TAN M X, LE Q V. EfficientNetV2: smaller models and faster training[C]//Proceedings of the International Conference on Machine Learning, 2021. [43] HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1314-1324. [44] WANG A, CHEN H, LIN Z J, et al. Rep ViT: revisiting mobile CNN from ViT perspective[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 15909-15920. |
| [1] | SHI Lichen, YANG Chao, LIU Xuechao, ZHOU Xingyu. Lightweight Low-Light Object Detection Algorithm Based on CDD-YOLO [J]. Computer Engineering and Applications, 2025, 61(6): 106-117. |
| [2] | KANG Yu, HAO Xiaoli. Fine Grained Visual Classification Method for Combined Discriminative Region Features [J]. Computer Engineering and Applications, 2025, 61(2): 227-233. |
| [3] | JIA Xiangyu, ZHANG Yonghong, KAN Xi, ZHU Linglong, LI Xu. D3F-DET: Lightweight and Multiscale Fusion Algorithm for Pavement Defect Detection [J]. Computer Engineering and Applications, 2025, 61(17): 159-170. |
| [4] | CHEN Xianglong, LI Songyang, CHEN Enqing, GUO Xin, WANG Song. Lightweight Human Pose Estimation with Joint Cross-Stage Information Fusion [J]. Computer Engineering and Applications, 2025, 61(16): 160-170. |
| [5] | DOU Zhi, GAO Haoran, LIU Guoqi, CHANG Baofang. Small Sample Steel Plate Defect Detection Algorithm of Lightweight YOLOv8 [J]. Computer Engineering and Applications, 2024, 60(9): 90-100. |
| [6] | CAO Ganggang, WANG Banghai, SONG Yu. Cross-Modal Re-Identification Light Weight Network Combined with Data Enhancement [J]. Computer Engineering and Applications, 2024, 60(8): 131-139. |
| [7] | WANG Yonggui, WANG Xinru. Multi-View Group Recommendation Integrating Self-Attention and Graph Convolution [J]. Computer Engineering and Applications, 2024, 60(8): 287-295. |
| [8] | XIE Ruobing, LI Maojun, LI Yiwei, HU Jianwen. Improving YOLOX-s Dense Garbage Detection Method [J]. Computer Engineering and Applications, 2024, 60(5): 250-258. |
| [9] | XIN Shi’ao, GE Haibo, YUAN Hao, YANG Yudi , YAO Yang. Improved Lightweight Underwater Target Detection Algorithm of YOLOv7 [J]. Computer Engineering and Applications, 2024, 60(3): 88-99. |
| [10] | GAO Xujie, LI Zetao, ZENG Huarong, YANG Qi, ZHANG Lusong. State Recognition Method of Transmission Line Ice-Melting Switch Based on Improved YOLOv7 [J]. Computer Engineering and Applications, 2024, 60(23): 314-324. |
| [11] | WU Chengpeng, TAN Guangxing, CHEN Haifeng, LI Chunyu. Lightweight and Efficient Human Pose Estimation Fusing Transformer and Attention [J]. Computer Engineering and Applications, 2024, 60(22): 197-208. |
| [12] | YAO Jingli, CHENG Guang, WAN Fei, ZHU Deping. Improved Lightweight Bearing Defect Detection Algorithm of YOLOv8 [J]. Computer Engineering and Applications, 2024, 60(21): 205-214. |
| [13] | WANG Fengying, CHEN Ying, YUAN Shuai, DU Liming. Robot Path Planning Based on Self-Attention Mechanism Combined with DDPG [J]. Computer Engineering and Applications, 2024, 60(19): 158-166. |
| [14] | MA Sai, GE Haibo, HE Wenhao, CHENG Mengyang, AN Yu. Research on Lightweight and Efficient Bottom-Up Human Pose Estimation Algorithm [J]. Computer Engineering and Applications, 2024, 60(18): 217-229. |
| [15] | XIE Ze, CHEN Qingfeng, MO Shaocong, LIU chunyu, QIU Junlai. Knowledge Enhanced Dual-Channel Multi-Head Graph Convolutional Networks for Aspect-Based Sentiment Analysis [J]. Computer Engineering and Applications, 2024, 60(17): 98-106. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||