Computer Engineering and Applications ›› 2025, Vol. 61 ›› Issue (6): 304-316.DOI: 10.3778/j.issn.1002-8331.2311-0264
• Graphics and Image Processing • Previous Articles Next Articles
XIE Ruilin, WU Hao, YUAN Guowu
Online:
2025-03-15
Published:
2025-03-14
谢瑞麟,吴昊,袁国武
XIE Ruilin, WU Hao, YUAN Guowu. Single Image Deraining Using Rainy Streak Degradation Prediction and Pre-Trained Diffusion Prior[J]. Computer Engineering and Applications, 2025, 61(6): 304-316.
谢瑞麟, 吴昊, 袁国武. 雨痕退化预测与预训练扩散先验的单图像去雨方法[J]. 计算机工程与应用, 2025, 61(6): 304-316.
[1] WANG H, WU Y, LI M, et?al. A survey on rain removal from video and single image[J]. Science China Information Sciences, 2022, 65: 111101. [2] ANWAR S, TAHIR M, LI C, et?al. Image colorization: a survey and dataset[J]. arXiv:2008.10774, 2020. [3] LARSSON G, MAIRE M, SHAKHNAROVICH G. Learning representations for automatic colorization[C]//Proceedings of the European Conference on Computer Vision (ECCV 2016), 2016: 577-593. [4] KAWAR B, ELAD M, ERMON S, et?al. Denoising diffusion restoration models[C]//Advances in Neural Information Processing Systems, 2022: 23593-23606. [5] WANG Y, YU J, ZHANG J. Zero-shot image restoration using denoising diffusion null-space model[C]//Proceedings of the Eleventh International Conference on Learning Representations, 2023. [6] LEDIG C, THEIS L, HUSZAR F, et?al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. [7] HARIS M, SHAKHNAROVICH G, UKITA N. Deep back-projection networks for super-resolution[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018. [8] KANG L W, LIN C W, FU Y H. Automatic single-image-based rain streaks removal via image decomposition[J]. IEEE Transactions on Image Processing, 2012, 21(4): 1742-1755. [9] ZHANG H, PATEL V?M. Convolutional sparse and low-rank coding-based rain streak removal[C]//Proceedings of the 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), 2017. [10] LI Y, TAN R?T, GUO X, et?al. Rain streak removal using layer priors[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. [11] YANG W, TAN R?T, FENG J, et?al. Deep joint rain detection and removal from a single image[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. [12] ZHANG H, SINDAGI V, PATEL V?M. Image de-raining using a conditional generative adversarial network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(11): 3943-3956. [13] GOU Y, LI B, LIU Z, et?al. CLEARER: multi-scale neural architecture search for image restoration[C]//Advances in Neural Information Processing Systems, 2020. [14] WANG H, YUE Z, XIE Q, et?al. From rain generation to rain removal[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021. [15] SHAO M, LI L, WANG H, et?al. Selective generative adversarial network for raindrop removal from a single image[J]. Neurocomputing, 2021, 426: 265-273. [16] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et?al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144. [17] HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[C]//Advances in Neural Information Processing Systems, 2020: 6840-6851. [18] JABBAR A, LI X, OMAR B. A survey on generative adversarial networks: variants, applications, and training[J]. ACM Computing Surveys, 2022, 54(8): 1-49. [19] NICHOL A, DHARIWAL P, RAMESH A, et?al. GLIDE: towards photorealistic image generation and editing with text-guided diffusion models[J]. arXiv:2112.10741, 2021. [20] NICHOL A?Q, DHARIWAL P. Improved denoising diffusion probabilistic models[C]//Proceedings of the International Conference on Machine Learning, 2021: 8162-8171. [21] RAMESH A, DHARIWAL P, NICHOL A, et?al. Hierarchical text-conditional image generation with CLIP latents[J]. arXiv: 2204.06125, 2022. [22] CROITORU F A, HONDRU V, IONESCU R?T, et?al. Diffusion models in vision: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(9): 10850-10869. [23] ZHU Y, ZHANG K, LIANG J, et?al. Denoising diffusion models for plug-and-play image restoration[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (NTIRE), 2023. [24] FEI B, LYU Z, PAN L, et?al. Generative diffusion prior for unified image restoration and enhancement[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 9935-9946. [25] DENG J, DONG W, SOCHER R, et?al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009. [26] DHARIWAL P, NICHOL A. Diffusion models beat GANs on image synthesis[C]//Advances in Neural Information Processing Systems, 2021: 8780-8794. [27] HUYNH-THU Q, GHANBARI M. Scope of validity of PSNR in image/video quality assessment[J]. Electronics Letters, 2008, 44(13): 800. [28] WANG Z, BOVIK A, SHEIKH H, et?al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. [29] ZHANG R, ISOLA P, EFROS A?A, et?al. The unreasonable effectiveness of deep features as a perceptual metric[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018. [30] EIGEN D, KRISHNAN D, FERGUS R. Restoring an image taken through a window covered with dirt or rain[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision, 2013. [31] YU L, WANG B, HE J, et?al. Single image deraining with continuous rain density estimation[J]. IEEE Transactions on Multimedia, 2023, 25: 443-456. [32] YADAV S, MEHRA A, ROHMETRA H, et?al. DerainGAN: single image deraining using Wasserstein GAN[J]. Multimedia Tools and Applications, 2021, 80(30): 36491-36507. [33] WEI Y, ZHANG Z, WANG Y, et?al. Semi-deraingan: a new semi-supervised single image deraining[C]//Proceedings of the 2021 IEEE International Conference on Multimedia and Expo (ICME), 2021. [34] WEI Y, ZHANG Z, ZHANG H, et?al. A coarse-to-fine multi-stream hybrid deraining network for single image deraining[C]//Proceedings of the 2019 IEEE International Conference on Data Mining (ICDM), 2019. [35] LI B, LIU X, HU P, et?al. All-in-one image restoration for unknown corruption[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022: 17431-17441. [36] YANG W, TAN R?T, FENG J, et?al. Joint rain detection and removal from a single image with contextualized deep networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(6): 1377-1393. [37] FU X, HUANG J, DING X, et?al. Clearing the skies: a deep network architecture for single-image rain removal[J]. IEEE Transactions on Image Processing, 2017, 26(6): 2944-2956. [38] XIA H, ZHUGE R, LI H, et?al. Single image rain removal via a simplified residual dense network[J]. IEEE Access, 2018, 6: 66522-66535. [39] ZHANG H, PATEL V?M. Density-aware single image de-raining using a multi-stream dense network[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018. [40] REN D, ZUO W, HU Q, et?al. Progressive image deraining networks: a better and simpler baseline[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019. [41] WANG T, YANG X, XU K, et?al. Spatial attentive single-image deraining with a high quality real rain dataset[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019. [42] FU X, LIANG B, HUANG Y, et?al. Lightweight pyramid networks for image deraining[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(6): 1794-1807. [43] YASARLA R, SINDAGI V?A, PATEL V?M. Syn2Real transfer learning for image deraining using Gaussian processes[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020. [44] VASWANI A, SHAZEER N, PARMAR N, et?al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017. [45] KHAN S, NASEER M, HAYAT M, et?al. Transformers in vision: a survey[J]. ACM Computing Surveys, 2022, 54(10): 1-41. [46] WANG Z, CUN X, BAO J, et?al. Uformer: a general U-shaped transformer for image restoration[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022. [47] TU Z, TALEBI H, ZHANG H, et?al. MAXIM: multi-axis MLP for image processing[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022. [48] CHEN X, WANG X, ZHOU J, et?al. Activating more pixels in image super-resolution transformer[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 22367-22377. [49] LIANG J, CAO J, SUN G, et?al. SwinIR: image restoration using swin transformer[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), 2021. [50] CHEN Z, ZHANG Y, GU J, et?al. Cross aggregation transformer for image restoration[C]//Advances in Neural Information Processing Systems, 2022: 25478-25490. [51] LIANG Y, ANWAR S, LIU Y. DRT: a lightweight single image deraining recursive transformer[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2022. [52] CHEN X, LI H, LI M, et?al. Learning a sparse transformer network for effective image deraining[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023: 5896-5905. [53] XIAO J, FU X, LIU A, et?al. Image de-raining transformer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(11): 1-18. [54] ZAMIR S?W, ARORA A, KHAN S, et?al. Restormer: efficient transformer for high-resolution image restoration[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 5728-5739. [55] CHEN H, WANG Y, GUO T, et?al. Pre-trained image processing transformer[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 12299-12310. [56] LIU Z, LIN Y, CAO Y, et?al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021. [57] HU X, FU C W, ZHU L, et?al. Depth-attentional features for single-image rain removal[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019. [58] QIAN R, TAN R?T, YANG W, et?al. Attentive generative adversarial network for raindrop removal from a single image[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018. [59] WEI Y, ZHANG Z, WANG Y, et?al. DerainCycleGAN: rain attentive CycleGAN for single image deraining and rainmaking[J]. IEEE Transactions on Image Processing, 2021, 30: 4788-4801. [60] ZHU J Y, PARK T, ISOLA P, et?al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), 2017. [61] SONG Y, ERMON S. Generative modeling by estimating gradients of the data distribution[C]//Advances in Neural Information Processing Systems, 2019. [62] SOHL-DICKSTEIN J, WEISS E, MAHESWARANATHAN N, et?al. Deep unsupervised learning using nonequilibrium thermodynamics[C]//Proceedings of the International Conference on Machine Learning, 2015: 2256-2265. [63] SONG J, MENG C, ERMON S. Denoising diffusion implicit models[C]//Proceedings of the International Conference on Learning Representations, 2020. [64] SAHARIA C, CHAN W, SAXENA S, et?al. Photorealistic text-to-image diffusion models with deep language understanding[C]//Advances in Neural Information Processing Systems, 2022: 36479-36494. [65] ROMBACH R, BLATTMANN A, LORENZ D, et?al. High-resolution image synthesis with latent diffusion models[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022. [66] LUO Z, GUSTAFSSON F?K, ZHAO Z, et?al. Image restoration with mean-reverting stochastic differential equations[C]//Proceedings of the International Conference on Machine Learning, 2023. [67] SAHARIA C, HO J, CHAN W, et?al. Image super-resolution via iterative refinement[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(4): 4713-4726. [68] XIA B, ZHANG Y, WANG S, et?al. DiffIR: efficient diffusion model for image restoration[J]. arXiv:2303.09472, 2023. [69] SAHARIA C, CHAN W, CHANG H, et?al. Palette: image-to-image diffusion models[C]//Proceedings of the Special Interest Group on Computer Graphics and Interactive Techniques Conference Proceedings, 2022. [70] LUGMAYR A, DANELLJAN M, ROMERO A, et?al. RePaint: inpainting using denoising diffusion probabilistic models[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022. [71] ?ZDENIZCI O, LEGENSTEIN R. Restoring vision in adverse weather conditions with patch-based denoising diffusion models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(8): 10346-10357. [72] WANG H, XIE Q, ZHAO Q, et?al. RCDNet: an interpretable rain convolutional dictionary network for single image deraining[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 35(6): 8668-8682. [73] WANG H, XIE Q, ZHAO Q, et?al. A model-driven deep neural network for single image rain removal[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020. [74] MARTIN D, FOWLKES C, TAL D, et?al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//Proceedings Eighth IEEE International Conference on Computer Vision (ICCV 2001), 2002. [75] KINGMA D, BA J. Adam: a method for stochastic optimization[J]. arXiv:1412.6980, 2014. [76] ZAMIR S?W, ARORA A, KHAN S, et?al. Multi-stage progressive image restoration[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021. [77] LI X, WU J, LIN Z, et?al. Recurrent squeeze-and-excitation context aggregation net for single image deraining[C]//Proceedings of the European Conference on Computer Vision, 2018: 262-277. [78] YASARLA R, PATEL V?M. Uncertainty guided multi-scale residual learning-using a cycle spinning CNN for single image de-raining[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019. [79] WEI W, MENG D, ZHAO Q, et?al. Semi-supervised transfer learning for image rain removal[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019. [80] PUROHIT K, SUIN M, RAJAGOPALAN A, et?al. Spatially-adaptive image restoration using distortion-guided networks[C]//Proceedings of the International Conference on Computer Vision, 2021. [81] LI Y, LU J, CHEN H, et?al. Dilated convolutional transformer for high-quality image deraining[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2023: 4199-4207. [82] FU X, HUANG J, ZENG D, et?al. Removing rain from single images via a deep detail network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 3855-3863. [83] LI S, REN W, ZHANG J, et?al. Single image rain removal via a deep decomposition-composition network[J]. Computer Vision and Image Understanding, 2019, 186: 48-57. |
[1] | YU Xin, MA Tinghuai, PENG Kexing, JIA Li, JIANG Yongyi. Meta-Adapter Integration Learning Approach for Multi-Domain Few-Shot Data [J]. Computer Engineering and Applications, 2025, 61(5): 122-133. |
[2] | WANG Xuyang, PANG Wenqian, ZHAO Lijie. Multiview Interaction Learning Network for Multimodal Aspect-Level Sentiment Analysis [J]. Computer Engineering and Applications, 2024, 60(7): 92-100. |
[3] | GAO Xinyu, DU Fang, SONG Lijuan. Comparative Review of Text-to-Image Generation Techniques Based on Diffusion Models [J]. Computer Engineering and Applications, 2024, 60(24): 44-64. |
[4] | CUI Jinman, LI Dongmei, TIAN Xuan, MENG Xianghao, YANG Yu, CUI Xiaohui. Survey on Prompt Learning [J]. Computer Engineering and Applications, 2024, 60(23): 1-27. |
[5] | XU Xiaoyang, ZHANG Mengfei. Remote Sensing Image Super-Resolution Algorithm Based on LR Coding Network and Diffusion Model [J]. Computer Engineering and Applications, 2024, 60(22): 271-281. |
[6] | ZHANG Hengwei, XU Linsen, CHEN Gen, WANG Zhihuan, SUI Xiang. Upper Limb Action Recognition Based on Transfer Learning and sEMG [J]. Computer Engineering and Applications, 2024, 60(20): 124-132. |
[7] | ZHANG Qintong, WANG Yuchao, WANG Hexi, WANG Junxin, CHEN Hai. Comprehensive Review of Large Language Model Fine-Tuning [J]. Computer Engineering and Applications, 2024, 60(17): 17-33. |
[8] | YUAN Zhixiang, GAO Yongqi. InternDiffuseDet: Object Detection Method Combining Deformable Convolution and Diffusion Model [J]. Computer Engineering and Applications, 2024, 60(12): 203-215. |
[9] | LIN Lingde, LIU Na, WANG Zheng'an. Review of Research on Adapter and Prompt Tuning [J]. Computer Engineering and Applications, 2023, 59(2): 12-21. |
[10] | WANG Chen, LI Ming, MA Jingang. Review of Relation Extraction in Electronic Medical Records [J]. Computer Engineering and Applications, 2023, 59(16): 63-73. |
[11] | SUN Kun, QIN Bowen, SANG Jitao, YU Jian. Multi-Label Text Classification Based on Shared Semantic Space [J]. Computer Engineering and Applications, 2023, 59(12): 100-105. |
[12] | LI Jinming,QU Yi,PEI Yuhao,YI Zejiang. Pedestrian re-identification based on fine-tuned pre-trained convolutional neural network model [J]. Computer Engineering and Applications, 2018, 54(20): 219-222. |
[13] | SUO Wenshuang, JIA Yunfeng. Qualitative analysis on coexistence of Brusselator reaction-diffusion model [J]. Computer Engineering and Applications, 2015, 51(23): 65-67. |
[14] | HUANG Junheng1,SUN Yushan2,ZHU Dongjie2. Research of clustering algorithm based on diffusion model [J]. Computer Engineering and Applications, 2011, 47(2): 121-123. |
[15] | TANG Li-ming. Image edge enhancing method based on anisotropic diffusion model [J]. Computer Engineering and Applications, 2010, 46(35): 209-211. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 43
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 17
|
|
|||||||||||||||||||||||||||||||||||||||||||||