Computer Engineering and Applications ›› 2025, Vol. 61 ›› Issue (5): 122-133.DOI: 10.3778/j.issn.1002-8331.2309-0461

• Pattern Recognition and Artificial Intelligence • Previous Articles     Next Articles

Meta-Adapter Integration Learning Approach for Multi-Domain Few-Shot Data

YU Xin, MA Tinghuai, PENG Kexing, JIA Li, JIANG Yongyi   

  1. 1.School of Software, Nanjing University of Information Science & Technology, Nanjing 210044, China
    2.School of Computer Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
    3.Reading Academy, Nanjing University of Information Science & Technology, Nanjing 210044, China
  • Online:2025-03-01 Published:2025-03-01

适用于多领域少样本的元适配器整合学习方法

于信, 马廷淮, 彭可兴, 贾莉, 蒋永溢   

  1. 1.南京信息工程大学 软件学院,南京 210044
    2.南京信息工程大学 计算机学院,南京 210044
    3.南京信息工程大学 雷丁学院,南京 210044

Abstract: To overcome the limitations of transfer learning caused by the diversity of source domain data and the lack of target domain data in multi-domain few-shot text summarization tasks, a learning method based on meta-adapter integration learning (MAIL) approach is proposed. MAIL employs a Transformer-based pre-trained model as the foundational model, incorporating an adapter module to constrain model parameters and layer depth, and uses meta-learning to fine-tune the adapters. Furthermore, a meta-adapter integration learning algorithm is designed to maximize the use of information across multiple domains and enhance the model’s cross-domain generalization capabilities. Experimental results show that MAIL exceeds existing mainstream models on standard text generation evaluation metrics and can effectively address common issues in cross-domain transfer, such as catastrophic forgetting, task interference, and training instability.

Key words: text summarization generation, few-shot learning, transfer learning, pre-trained model, adapter, meta learning

摘要: 针对多域少样本文本摘要任务中迁移学习面临的诸多挑战,尤其是源域数据的多样性以及目标域数据的数据稀缺性问题,提出了一种创新的学习方法,名为元适配器整合学习方法(meta-adapter integration learning, MAIL)。MAIL使用基于Transformer的预训练模型作为基础模型,融合适配器模块限制模型参数及层数,并采用元学习方法微调适配器。此外,为了增强在不同领域间的迁移和泛化能力,设计了一种元适配器整合算法,旨在最大化利用多域信息,增强模型跨领域泛化能力。实验结果显示,MAIL在标准文本生成评价指标上超越现有主流模型,并能有效应对跨领域迁移中常见的灾难性遗忘、任务干扰和训练不稳定等问题。

关键词: 文本摘要生成, 少样本学习, 迁移学习, 预训练模型, 适配器, 元学习