[1] YADAV V, BETHARD S. A survey on recent advances in named entity recognition from deep learning models[C]//Proceedings of the 27th International Conference on Computational Linguistics, 2018: 2145-2158.
[2] 何玉洁, 杜方, 史英杰, 等. 基于深度学习的命名实体识别研究综述[J]. 计算机工程与应用, 2021, 57(11): 21-36.
HE Y J, DU F, SHI Y J, et al. Survey of named entity recognition based on deep learning[J]. Computer Engineering and Applications, 2021, 57(11): 21-36.
[3] LIU Z, XU Y, YU T, et al. CrossNER: evaluating cross-domain named entity recognition[C]//Proceedings of the 21st AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI, 2021: 13452-13460.
[4] 张文韩, 刘小明, 杨关, 等.多层结构化语义知识增强的跨领域命名实体识别[J].计算机研究与发展, 2023, 60(12):2854-2876.
ZHANG W H, LIU X M, YANG G, et al. Cross-domain named entity recognition of multi-level structured semantic knowledge enhancement[J].Journal of Computer Research and Development, 2023, 60(12): 2854-2876.
[5] JIA C, ZHANG Y. Multi-cell compositional LSTM for NER domain adaptation[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: ACL, 2020: 5906-5917.
[6] LIU Z, WINATA G I, XU P, et al. Coach: a coarse-to-fine approach for cross-domain slot filling[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: ACL, 2020: 19-25.
[7] HU J P, ZHAO H, GUO D D, et al. A label-aware autoregressive framework for cross-domain NER[C]//Proceedings of Findings of the Association for Computational Linguistics(NAACL 2022), 2022: 2222-2232.
[8] LEE J Y, DERNONCOURT F, SZOLOVITS P. Transfer learning for named-entity recognition with neural networks[J]. arXiv:1705.06273, 2017.
[9] ZHENG J, CHEN H, MA Q. Cross-domain named entity recognition via graph matching[C]//Proceedings of Findings of the Association for Computational Linguistics. Stroudsburg, PA: ACL, 2022: 2670-2680.
[10] CHEN X, LI L, FEI Q, et al. One model for all domains: collaborative domain-prefix tuning for cross-domain NER[J]. arXiv:2301.10410, 2023.
[11] FEDER A, KEITH K A, MANZOOR E, et al. Causal inference in natural language processing: estimation, prediction, interpretation and beyond[J]. Transactions of the Association for Computational Linguistics, 2022, 10: 1138-1158.
[12] NAN G, ZENG J, QIAO R, et al. Uncovering main causalities for long-tailed information extraction[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, 2021: 9683-9695.
[13] ZENG X, LI Y, ZHAI Y, et al. Counterfactual generator: a weakly-supervised method for named entity recognition[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2020: 7270-7280.
[14] NAN J, WANG Y, WANG C. Rating prediction model based on causal inference debiasing method in recommendation[J]. Chinese Journal of Electronics, 2023, 32(4): 932-940.
[15] KAUSHIK D, HOVY E, LIPTON Z. Learning the difference that makes a difference with counterfactually-augmented data[C]//Proceedings of the International Conference on Learning Representations, 2019.
[16] KAUSHIK D, SETLUR A, HOVY E H, et al. Explaining the efficacy of counterfactually augmented data[C]//Proceedings of the International Conference on Learning Representations, 2020.
[17] WANG Z, CULOTTA A. Identifying spurious correlations for robust text classification[C]//Proceedings of Findings of the Association for Computational Linguistics (EMNLP 2020), 2020: 3431-3440.
[18] XU N, WANG F, LI B, et al. Does your model classify entities reasonably? Diagnosing and mitigating spurious correlations in entity typing[C]//Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, 2022: 8642-8658.
[19] MOGHIMIFAR F, HAFFARI G, BAKTASHMOTLAGH M. Domain adaptative causality encoder[C]//Proceedings of the The 18th Annual Workshop of the Australasian Language Technology Association, 2020: 1-10.
[20] 李家宁, 熊睿彬, 兰艳艳, 等. 因果机器学习的前沿进展综述[J].?计算机研究与发展, 2023, 60(1): 59-84.
LI J N, XIONG R B, LAN Y Y et, al. Overview of the frontier progress of causal machine learning[J].Journal of Computer Research and Development, 2023, 60(1): 59-84.
[21] PEARL J, GLYMOUR M, JEWELL N P. Causal inference in statistics: a primer[M]. [S.l.]: John Wiley & Sons, 2016.
[22] FRITZLER A, LOGACHEVA V, KRETOV M. Few-shot classification in named entity recognition task[C]//Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, 2019: 993-1000.
[23] TONG M, WANG S, XU B, et al. Learning from miscellaneous other-class words for few-shot named entity recognition[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), 2021: 6236-6247.
[24] CUI L, WU Y, LIU J, et al. Template-based named entity recognition using BART[C]//Proceedings of Findings of the Association for Computational Linguistics (ACL-IJCNLP 2021), 2021: 1835-1845.
[25] MA R, ZHOU X, GUI T, et al. Template-free prompt tuning for few-shot NER[C]//Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2022: 5721-5732.
[26] GU S, FENG Y, LIU Q. Improving domain adaptation translation with domain invariant and specific information[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long and Short Papers), 2019: 3081-3091.
[27] CHEN J, LIN H, HAN X, et al. Honey or poison? Solving the trigger curse in few-shot event detection via causal intervention[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, 2021: 8078-8088.
[28] TANG K, HUANG J, ZHANG H. Long-tailed classification by keeping the good and removing the bad momentum causal effect[C]//Advances in Neural Information Processing Systems, 2020: 1513-1524.
[29] ZHANG W, LIN H, HAN X, et al. De-biasing distantly supervised named entity recognition via causal intervention[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), 2021: 4803-4813.
[30] PEYRé G, CUTURI M, SOLOMON J. Gromov-wasserstein averaging of kernel and distance matrices[C]//Proceedings of the 33rd International Conference on International Conference on Machine Learning, 2016: 2664-2672.
[31] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]//Proceedings of International Conference on Learning Representations, 2016.
[32] KENTON J D M W C, TOUTANOVA L K. BERT: pre-training of deep bidirectional apr transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long and Short Papers), 2019: 4171-4186
[33] JIE Z, LU W. Dependency-guided LSTM-CRF for named entity recognition[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 2019: 3862-3872.
[34] LAMPLE G, BALLESTEROS M, SUBRAMANIAN S, et al. Neural architectures for named entity recognition[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2016: 260-270.
[35] SANG E F T K, DE MEULDER F. Introduction to the CoNLL-2003 shared task: language-independent named entity recognition[C]//Proceedings of the 7th Conference on Natural Language Learning at HLT-NAACL 2003. Stroudsburg, PA: ACL, 2003: 142-147.
[36] NéDELLEC C, BOSSY R, KIM J, et al. Overview of BioNLP shared task 2013[C]//Proceedings of the BioNLP shared task 2013 Workshop. Stroudsburg, PA: ACL, 2013: 1-7.
[37] LIU J, PASUPAT P, CYPHERS S, et al. Asgard: a portable archi tecture for multilingual dialogue systems[C]//Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 2013: 8386-8390.
[38] LIU J, PASUPAT P, WANG Y, et al. Query understanding enhanced by hierarchical parsing structures[C]//Proceedings of the 2013 IEEE Workshop on Automatic Speech Recognition and Understanding, 2013: 72-77.
[39] PASZKE A, GROSS S, MASSA F, et al. PyTorch: an imperative style, high-performance deep learning library[C]//Advances in Neural Information Processing Systems, 2019:8024-8035.
[40] LAMPLE G, BALLESTEROS M, SUBRAMANIAN S, et al. Neural architectures for named entity recognition[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. PA: ACL, 2016: 260-270. |