SUN Yuxin, CAO Xiaomei, WANG Shaohui. Factorization Machine Recommender Algorithm Based on Context Information Transfer[J]. Computer Engineering and Applications, 2022, 58(6): 134-141.
[1] DAVID R,JOHN G,JOHN R.Data age 2025:the evolution of data to life-critical[EB/OL].[2018].https://www.seagate.com/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf.
[2] 黄立威,江碧涛,吕守业,等.基于深度学习的推荐系统研究综述[J].计算机学报,2018,41(7):1619-1647.
HUANG L W,JIANG B T,LV S Y,et al.Survey on deep learing based recommender systems[J].Chinese Journal of Computer,2018,41(7):1619-1647.
[3] 王立才,孟祥武,张玉洁.上下文感知推荐系统[J].软件学报,2012,23(1):1-20.
WANG L C,MENG X W,ZHANG Y J.Context-aware recommender systems[J].Journal of Software,2012,23(1):1-20.
[4] ADOMAVICIUS G,SANKARANARAYANAN R,SEN S,et al.Incorporating contextual information in recommender systems using a multidimensional approach[J].ACM Transactions on Information Systems,2005,23(1):103-145.
[5] HE X N,LIAO L Z,ZHANG H W,et al.Neural collaborative filtering[C]//International Conference on World Wide Web,2017:173-182.
[6] WU S,LIU Q,WANG L.Modeling contextual big data for user behavior prediction[J].Big Data Research,2016,2(6):110-117.
[7] BALTRUNAS L,AMATRIAIN X.Towards time-dependant recommendation based on implicit feedback[C]//Proceedings of the Recsys 2009 Workshop on Context-Aware Recommender Systems,2009:1-5.
[8] 罗国前,刘志勇,张琳,等.移动环境下基于情境感知的个性化影视推荐算法研究[J].计算机应用研究,2020,37(5):1306-1310.
LUO G Q,LIU Z Y,ZHANG L,et al.Research on personalized film recommendation algorithm based on context-aware in mobile environment[J].Application Research of Computers,2020,37(5):1306-1310.
[9] GU Y L,SONG J X,LIU W D,et al.CAMF:context aware matrix factorization for social recommendation[J].Web Intelligence,2018,16(1):53-71.
[10] RENDLE S.Factorization machines[C]//Proceedings of the 10th IEEE International Conference on Data Mining,2010:995-1000.
[11] MANOUSELIS N,COSTOPOULOU C.Analysis and classification of multi-criteria recommender systems[J].World Wide Web,2007,10(4):415-441.
[12] CAI Q,HAN D M,LI H S,et al.Personalized resource recommendation based on tags and collaborative filtering[J].Computer Science,2014,41(1):69-71.
[13] 陈碧毅,黄玲,王昌栋,等.融合显式反馈与隐式反馈的协同过滤推荐算法[J].软件学报,2020,31(3):794-805.
CHEN B Y,HUANG L,WANG C D,et al.Explicit and implicit feedback based collaborative filtering algorithm[J].Journal of Software,2020,31(3):794-805.
[14] BATMAZ Z,YUREKLI A,BILGE A,et al.A review on deep learning for recommender systems:challenges and remedies[J].Artificial Intelligence Review,2019,52(1):1-37.
[15] ZHANG S A,YAO L N,SUN A X.Deep learning based recommender system:a survey and new perspectives[J].ACM Computing Surveys,2019,52(1):1-35.
[16] OKU K,NAKAJIMA S,MIYAZAKI J,et al.Context-aware SVM for context-dependent information recommendation[C]//Mobile Data Management,2006:109-112.
[17] CHEN L,ZHENG J,GAO M,et al.TLRec:transfer learning for cross-domain recommendation[C]//2017 IEEE International Conference on Big Knowledge(ICBK),2017:167-172.
[18] PAN J S,YANG Q.A survey on transfer learning[J].IEEE Transactions on Knowledge and Data Engineering,2010,22(10):1345-1359.
[19] LI B,YANG Q,XUE X Y.Can movies and books collaborate? cross-domain collaborative filtering for sparsity reduction[C]//Proceedings of 2009 International Joint Conference on Artificial Intelligence,2009:2052-2057.
[20] 葛梦凡,刘真,王娜娜,等.加入标签迁移的跨领域项目推荐算法[J].计算机科学,2019,46(10):7-12.
GE M F,LIU Z,WANG N N,et al.Cross-domaing item recommendation algorithm including tag transfer[J].Computer Science,2019,46(10):7-12.
[21] PAN W K,YANG Q,DUAN Y C,et al.Transfer learning for semisupervised collaborative recommendation[J].The ACM Transactions on Interactive Intelligent Systems,2016,6(2):1-21.
[22] 张鹏飞,王宜贵,张志军.融合标签和多元信息的个性化推荐算法研究[J].计算机工程与应用,2019,55(5):159-165.
ZHANG P F,WANG Y G,ZHANG Z J.Research on personalized recommendation algorithm based on label and multi-information[J].Computer Engineering and Applications,2019,55(5):159-165.
[23] 郑鹏,王应明,梁薇.基于信任和矩阵分解的协同过滤推荐算法[J].计算机工程与应用,2018,54(13):34-40.
ZHENG P,WANG Y M,LIANG W.Collaborative filtering recommendation algorithm based on trust and matrix factorization[J].Computer Engineering and Applications,2018,54(13):34-40.
[24] 胡亚慧,李石君,余伟,等.一种结合文化和因子分解机的快速评分预测方法[J].南京大学学报(自然科学版),2015,51(4):826-833.
HU Y H,LI S J,YU W,et al.A fast rating predicting method based on the culture and factorization machine[J].Journal of Nanjing University(Natural Sciences),2015,51(4):826-833.
[25] RAKSHITH V.What is one hot encoding why and when do you have to use it[EB/OL].[2017].https://hackernoon.com/what-is-one-hot-encoding-why-and-when-do-you-have-to-use-it-e3c6186d008f.
[26] CHEN T Q,GUESTRIN C.XGBoost:a scalable tree boosting system[C]//Knowledge Discovery and Data Mining,2016:785-794.
[27] DAI W Y,YANG Q,XUE G R,et al.Boosting for transfer learning[C]//International Conference on Machine Learning,2007:193-200.
[28] SINGH A P,GORDON G J.Relational learning via collective matrix factorization[C]//Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2008:650-658.