HUANG Zeying, LI Haiyan, LIN Jingliang. Surrogate Model Construction Method of Extreme Learning Machine Based on Transfer Learning and Application[J]. Computer Engineering and Applications, 2021, 57(22): 257-262.
[1] 龙腾,刘建,WANG G G,等.基于计算试验设计与代理模型的飞行器近似优化策略探讨[J].机械工程学报,2016,52(14):79-105.
LONG T,LIU J,WANG G G,et al.Discuss on approximate optimization strategies using design of computer experiments and metamodels for flight vehicle design[J].Journal of Mechanical Engineering,2016,52(14):79-105.
[2] IBRAHIM I,SILVA R P,MOHAMMADI M H,et al.Surrogate-based acoustic noise prediction of electric motors[J].IEEE Transactions on Magnetics,2020,56(2):1-4.
[3] 魏锋涛,卢凤仪.融合核函数在改进径向基代理模型中的应用[J].计算机工程与应用,2019,55(7):58-65.
WEI F T,LU F Y.Application of hybrid kernel function in improved radial basis function metamodel[J].Computer Engineering and Applications,2019,55(7):58-65.
[4] JAKOBSSON S,PATRIKSSON M,RUDHOLM J,et al.A method for simulation based optimization using radial basis functions[J].Optimization & Engineering,2010,11(4):501-532.
[5] 张晨曦,唐曙,唐珂.迁移学习下的火箭发动机参数异常检测策略[J].计算机应用,2020,40(9):2774-2780.
ZHANG C X,TANG S,TANG K.Strategies of parameter fault detection for rocket engines based on transfer learning[J].Journal of Computer Applications,2020,40(9):2274-2780.
[6] 廖一鹏,杨洁洁,王志刚,等.基于双模态卷积神经网络自适应迁移学习的浮选工况识别[J].光子学报,2020,49(10):173-184.
LIAO Y P,YANG J J,WANG Z G,et al.Flotation performance recognition based on dual-modality convolutional neural network adaptive transfer learning[J].Acta Photonica Sinica,2020,49(10):173-184.
[7] ZHU Z,GUO H W.Design of an RBF surrogate model for low reynolds number airfoil based on transfer learning[C]//31st Chinese Control and Decision Conference,Nanchang,Jun 2-5,2019:4555-4559.
[8] 周婷,吴宗成,陈泽民,等.翼身组合体的变可信度优化设计[J].北京航空航天大学学报,2012,38(7):962-965.
ZHOU T,WU Z C,CHEN Z M,et al.Variable-fidelity optimization applied to wing-body configuration[J].Journal of Beijing University of Aeronautics and Astronautics,2012,38(7):962-965.
[9] SHI M,LV L,SUN W,et al.A multi-fidelity surrogate model based on support vector regression[J].Structural and Multidisciplinary Optimization,2020,61(6):2363-2375.
[10] KOU J,ZHANG W.Multi-fidelity modeling framework for nonlinear unsteady aerodynamics of airfoils[J].Applied Mathematical Modelling,2019,76:832-855.
[11] 周奇,杨扬,宋学官,等.变可信度近似模型及其在复杂装备优化设计中的应用研究进展[J].机械工程学报,2020,56(24):219-245.
ZHOU Q,YANG Y,SONG X G,et al.Survey of multi-fidelity surrogate models and their applications in the design and optimization of engineering equipment[J].Journal of Mechanical Engineering,2020,56(24):219-245.
[12] PAN S J,QIANG Y.A survey on transfer learning[J].IEEE Transactions on Knowledge and Data Engineering,2010,22(10):1345-1359.
[13] HUANG G B,ZHU Q Y,SIEW C K,et al.Extreme learning machine:a new learning scheme of feedforward neural networks[C]//2004 IEEE International Joint Conference on Neural Networks,2004:985-990.
[14] KANG F.Extreme learning machine-based surrogate model for analyzing system reliability of soil slopes[J].European Journal of Environmental and Civil Engineering,2017,21(11):1341-1362.
[15] PARDOE D,STONE P.Boosting for regression transfer[C]//27th International Conference on International Conference on Machine Learning,Haifa,Jun 21-24,2010:863-870.