Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (7): 41-57.DOI: 10.3778/j.issn.1002-8331.2307-0050
• Research Hotspots and Reviews • Previous Articles Next Articles
SHAO Chao, RUN Qingchen
Online:
2024-04-01
Published:
2024-04-01
邵超,润清晨
SHAO Chao, RUN Qingchen. Survey of Clustering Ensemble Research[J]. Computer Engineering and Applications, 2024, 60(7): 41-57.
邵超, 润清晨. 聚类集成研究综述[J]. 计算机工程与应用, 2024, 60(7): 41-57.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2307-0050
[1] LING P, RONG X, LI X. Fast spectral clustering of multi-relational data[C]//2022 IEEE 5th International Conference on Information Systems and Computer Aided Education, 2022: 405-410. [2] PITCHANDI P, BALAKRISHNAN M. Document clustering analysis with aid of adaptive Jaro Winkler with Jellyfish search clustering algorithm[J]. Advances in Engineering Software, 2023, 175: 103322. [3] JIAO J, WANG X, WEI T, et al. An adaptive fuzzy c-mean noise image segmentation algorithm combining local and regional information[J]. IEEE Transactions on Fuzzy Systems, 2023, 31(8): 2645-2657. [4] LEE P H, TORNG C C, LIN C H, et al. Control chart pattern recognition using spectral clustering technique and support vector machine under gamma distribution[J]. Computers & Industrial Engineering, 2022, 171: 108437. [5] 韩家炜, 坎伯, 裴健. 数据挖掘: 概念与技术[M]. 北京: 机械工业出版社, 2012: 288-290. HAN J W, KAMBER M, PEI J. Data mining: concepts and techniques[M]. Beijing: China Machine Press, 2012: 288-290. [6] STREHL A, GHOSH J. Cluster ensembles-a knowledge reuse framework for combining multiple partitions[J]. Journal of Machine Learning Research, 2002, 3(3): 583-617. [7] SHI P, GUO L, CUI H, et al. Geometric consistent fuzzy cluster ensemble with membership reconstruction for image segmentation[J]. Digital Signal Processing, 2023, 134: 103901. [8] VáZQUEZ I, VILLAR J R, SEDANO J, et al. An ensemble solution for multivariate time series clustering[J]. Neurocomputing, 2021, 457: 182-192. [9] SUBUDHI S, PANIGRAHI S. Application of OPTICS and ensemble learning for database intrusion detection[J]. Journal of King Saud University-Computer and Information Sciences, 2022, 34(3): 972-981. [10] MEKTHANAVANH V, LI T, HU J, et al. Social web video clustering based on multi-modal and clustering ensemble[J]. Neurocomputing, 2019, 366: 234-247. [11] GIONIS A, MANNILA H, TSAPARAS P. Clustering aggregation[J]. ACM Transactions on Knowledge Discovery from Data, 2007, 1(1): 1-27. [12] TOPCHY A, JAIN A K, PUNCH W. Clustering ensembles: models of consensus and weak partitions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(12): 1866-1881. [13] YANG W, ZHANG Y, WANG H, et al. Hybrid genetic model for clustering ensemble[J]. Knowledge-Based Systems, 2021, 231: 107457. [14] AYAD H G, KAMEL M S. On voting-based consensus of cluster ensembles[J]. Pattern Recognition, 2010, 43(5): 1943-1953. [15] YE M, LIU W, WEI J, et al. Fuzzy-means and cluster ensemble with random projection for big data clustering[J]. Mathematical Problems in Engineering, 2016: 6529794. [16] ANDERLUCCI L, FORTUNATO F, MONTANARI A. High-dimensional clustering via random projections[J]. Journal of Classification, 2022: 1-26. [17] HE S, LI H, GUO Q, et al. Feature weighted dual random sampling cluster ensemble[C]//2021 The 5th International Conference on Machine Learning and Soft Computing, 2021: 54-59. [18] WRIGHT J, MA Y. High-dimensional data analysis with low-dimensional models: principles, computation, and applications[M]. Cambridge University Press, 2022: 370-389. [19] DU X, HE Y, HUANG J Z. Random sample partition-based clustering ensemble algorithm for big data[C]//2021 IEEE International Conference on Big Data, 2021: 5885-5887. [20] JI S, XING R. Clustering ensemble of massive data based on trusted region[C]//2021 3rd International Conference on Machine Learning, Big Data and Business Intelligence, 2021: 337-340. [21] ALQURASHI T, WANG W. Clustering ensemble method[J]. International Journal of Machine Learning and Cybernetics, 2019, 10: 1227-1246. [22] WU T, FAN J, WANG P. An improved three-way clustering based on ensemble strategy[J]. Mathematics, 2022, 10(9): 1457. [23] FERN X Z, LIN W. Cluster ensemble selection[J]. Statistical Analysis and Data Mining: The ASA Data Science Journal, 2008, 1(3): 128-141. [24] FRED A L N, JAIN A K. Data clustering using evidence accumulation[C]//2002 International Conference on Pattern Recognition, 2002: 276-280. [25] FRED A L N, JAIN A K. Combining multiple clusterings using evidence accumulation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(6): 835-850. [26] WANG X, YANG C, ZHOU J. Clustering aggregation by probability accumulation[J]. Pattern Recognition, 2009, 42(5): 668-675. [27] IAM-ON N, BOONGOEN T, GARRETT S, et al. A link-based approach to the cluster ensemble problem[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2396-2409. [28] HUANG D, LAI J H, WANG C D. Robust ensemble clustering using probability trajectories[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(5) : 1312-1326. [29] HUANG D, WANG C D, LAI J H. Locally weighted ensemble clustering[J]. IEEE Transactions on Cybernetics, 2018, 48(5): 1460-1473. [30] LI F, QIAN Y, WANG J, et al. Clustering ensemble based on sample’s stability[J]. Artificial Intelligence, 2019, 273: 37-55. [31] JI X, LIU S, YANG L, et al. Clustering ensemble based on approximate accuracy of the equivalence granularity[J]. Applied Soft Computing, 2022, 129: 109492. [32] NIU X, ZHANG C, ZHAO X, et al. A multi-view ensemble clustering approach using joint affinity matrix[J]. Expert Systems with Applications, 2023, 216: 119484. [33] JIA Y, TAO S, WANG R, et al. Ensemble clustering via co-association matrix self-enhancement[J]. arXiv:2205.05937, 2022. [34] MIMAROGLU S, AKSEHIRLI E. DICLENS: divisive clustering ensemble with automatic cluster number[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2012, 9(2): 408-420. [35] HUANG D, WANG C D, PENG H X, et al. Enhanced ensemble clustering via fast propagation of cluster-wise similarities[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(1): 508-520. [36] ZHOU P, DU L, LI X. Self-paced consensus clustering with bipartite graph[C]//Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, 2021: 2133-2139. [37] ZHOU P, LIU X, DU L, et al. Self-paced adaptive bipartite graph learning for consensus clustering[J]. ACM Transactions on Knowledge Discovery from Data, 2023, 17(5): 1-35. [38] WANG L, LUO J, WANG H, et al. Markov clustering ensemble[J]. Knowledge-Based Systems, 2022, 251: 109196. [39] DUDOIT S, FRIDLYAND J. Bagging to improve the accuracy of a clustering procedure[J]. Bioinformatics, 2003, 19(9): 1090-1099. [40] ZHOU Z H, TANG W. Clusterer ensemble[J]. Knowledge-Based Systems, 2006, 19(1): 77-83. [41] SAEED F, SALIM N, ABDO A. Voting-based consensus clustering for combining multiple clusterings of chemical structures[J]. Journal of Cheminformatics, 2012, 4: 1-8. [42] 江志良, 侯远, 吴敏. 基于特征关系的加权投票聚类集成研究[J]. 计算机工程与应用, 2018, 54(3): 150-159. JIANG Z L, HOU Y, WU M. Clustering ensemble with weighted voting based on feature correlation[J]. Computer Engineering and Applications, 2018, 54(3): 150-159. [43] KHEDAIRIA S, KHADIR M T. A multiple clustering combination approach based on iterative voting process[J]. Journal of King Saud University-Computer and Information Sciences, 2022, 34(1): 1370-1380. [44] BURTON R J, CUFF S M, MORGAN M P, et al. GeoWaVe: geometric median clustering with weighted voting for ensemble clustering of cytometry data[J]. Bioinformatics, 2023, 39(1): btac751. [45] TOPCHY A, JAIN A K, PUNCH W. A mixture model for clustering ensembles[C]//Proceedings of the 2004 SIAM International Conference on Data Mining, 2004: 379-390. [46] WANG H, SHAN H, BANERJEE A. Bayesian cluster ensembles[J]. Statistical Analysis and Data Mining: The ASA Data Science Journal, 2011, 4(1): 54-70. [47] ZHU Z, XU M, KE J, et al. A Bayesian clustering ensemble Gaussian process model for network-wide traffic flow clustering and prediction[J]. Transportation Research Part C: Emerging Technologies, 2023, 148: 104032. [48] RASHEDI E, MIRZAEI A. A hierarchical clusterer ensemble method based on boosting theory[J]. Knowledge-Based Systems, 2013, 45: 83-93. [49] LI F, QIAN Y, WANG J, et al. Multigranulation information fusion: a Dempster-Shafer evidence theory-based clustering ensemble method[J]. Information Sciences, 2017, 378: 389-409. [50] DU H, WANG W, BAI L, et al. A generative clustering ensemble model and its application in IoT data analysis[J]. Wireless Communications and Mobile Computing, 2022: 8081177. [51] TIAN P, JIA S, DENG P, et al. Quantum clustering ensemble[J]. International Journal of Computational Intelligence Systems, 2021, 14(1): 248-256. [52] CRISTOFOR D, SIMOVICI D A. Finding median partitions using information-theoretical-based genetic algorithms[J]. Journal of Universal Computer Science, 2002, 8(2): 153-172. [53] LI T, DING C, JORDAN M I. Solving consensus and semi-supervised clustering problems using nonnegative matrix factorization[C]//Seventh IEEE International Conference on Data Mining, 2007: 577-582. [54] YE W, WANG H, YAN S, et al. Nonnegative matrix factorization for clustering ensemble based on dark knowledge[J]. Knowledge-Based Systems, 2019, 163: 624-631. [55] FRANEK L, JIANG X. Ensemble clustering by means of clustering embedding in vector spaces[J]. Pattern Recognition, 2014, 47(2): 833-842. [56] HUANG D, LAI J, WANG C D. Ensemble clustering using factor graph[J]. Pattern Recognition, 2016, 50: 131-142. [57] CABASSI A, KIRK P D W. Multiple kernel learning for integrative consensus clustering of omic datasets[J]. Bioinformatics, 2020, 36(18): 4789-4796. [58] CONG K, YANG J, WANG H, et al. Gaussian gravitation for cluster ensembles[J]. Knowledge-Based Systems, 2022, 253: 109444. [59] ZHONG Y, WANG H, YANG W, et al. Multi-objective genetic model for co-clustering ensemble[J]. Applied Soft Computing, 2023, 135: 110058. [60] JAIN A K, LAW M H C. Data clustering: a user’s dilemma[C]//First International Conference on Pattern Recognition and Machine Intelligence, Kolkata, India, December 20-22, 2005. Berlin, Heidelberg: Springer, 2005: 1-10. [61] ULTSCH A. Clustering wih som: U* c[C]//Proc Workshop on Self-Organizing Maps, 2005. [62] ASUNCION A, NEWMANDJ. UCI machine learning repository[DB/OL]. (2007-06-02). http://www.ics.uci.edu/-m-learn/MLRepository. html. [63] GARCíA S, FERNáNDEZ A, LUENGO J, et al. Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power[J]. Information Sciences, 2010, 180(10): 2044-2064. [64] DEM?AR J. Statistical comparisons of classifiers over multiple data sets[J]. The Journal of Machine Learning Research, 2006, 7: 1-30. [65] WANG L, ZHANG G. Cluster ensemble based image segmentation algorithm[C]//2015 Eighth International Conference on Internet Computing for Science and Engineering, 2015: 68-73. [66] RAMYA P, THANABAL M S, DHARMARAJA C. Brain tumor segmentation using cluster ensemble and deep super learner for classification of MRI[J]. Journal of Ambient Intelligence and Humanized Computing, 2021, 12: 9939-9952. [67] HE G, JIANG W, PENG R, et al. Soft subspace based ensemble clustering for multivariate time series data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(10): 7761-7774. [68] BAHRAMLOU A, HASHEMI M R, ZALI Z. Ensemble clustering and feature weighting in time series data[J]. The Journal of Supercomputing, 2023: 1-37. [69] GHORBANIAN A, RAZAVI H. A new method based on ensemble time series for fast and accurate clustering[J]. Data Technologies and Applications, 2023, 57(5): 756-779. [70] CHAKRABORTY B, CHATERJEE A, MALAKAR S, et al. An iterative approach to unsupervised outlier detection using ensemble method and distance-based data filtering[J]. Complex & Intelligent Systems, 2022, 8(4): 3215-3230. [71] BAVIFARD F, KHEYRANDISH M, MOSLEH M. A new approach based on game theory to reflect meta-cluster dependencies into VoIP attack detection using ensemble clustering[J]. Cluster Computing, 2022: 1-18. [72] 张鼎, 杨有龙, 孙丽芹. 基于拓展约束投影的加权半监督聚类集成算法[J]. 南京大学学报 (自然科学版), 2022, 58(4): 570-583. ZHANG D, YANG Y L, SUN L Q. Weighted semi-supervised clustering ensemble algorithm based on extended constraint projection[J]. Journal of Nanjing University (Natural Sciences), 2022, 58(4): 570-583. [73] GUILBERT M, VRAIN C, DE SOUTO M C P. Anchored constrained clustering ensemble[C]//2022 International Joint Conference on Neural Networks, 2022: 1-8. [74] ZHANG D, YANG Y, QIU H. Two-stage semi-supervised clustering ensemble framework based on constraint weight[J]. International Journal of Machine Learning and Cybernetics, 2023, 14(2): 567-586. [75] ACHARYA A, HRUSCHKA E R, GHOSH J, et al. Transfer learning with cluster ensembles[C]//Proceedings of ICML Workshop on Unsupervised and Transfer Learning, 2012: 123-132. [76] SUN R, HOU X, LI X, et al. Transfer learning strategy based on unsupervised learning and ensemble learning for breast cancer molecular subtype prediction using dynamic contrast‐enhanced MRI[J]. Journal of Magnetic Resonance Imaging, 2022, 55(5): 1518-1534. [77] WANG D, YUAN Y, CHENG R, et al. Data-driven outage restoration time prediction via transfer learning with cluster ensembles[J]. IEEE Transactions on Power Systems, 2023, 39(1): 83-96. |
[1] | CHEN Junfeng, ZHENG Zhongtuan. Over-Sampling Method on Imbalanced Data Based on WKMeans and SMOTE [J]. Computer Engineering and Applications, 2021, 57(23): 106-112. |
[2] | YANG Jingya, SUN Linfu, WU Qishi. After-Sales Customer Segmentation Based on Semi-Supervised Spectral Clustering Ensemble [J]. Computer Engineering and Applications, 2020, 56(2): 266-271. |
[3] | JIANG Zhiliang, HOU Yuan, WU Min. Clustering ensemble with weighted voting based on feature correlation [J]. Computer Engineering and Applications, 2018, 54(3): 150-159. |
[4] | FENG Xupeng1, MA Zhen1, XIE Bo1, LIU Lijun2, HUANG Qingsong2. Microblog topic detection method based on clustering ensemble [J]. Computer Engineering and Applications, 2017, 53(8): 81-86. |
[5] | WANG Chenxi1, LIN Menglei2, LIU Jinghua2, WANG Juan2, LIN Yaojin2. Multi-label feature selection via fusing feature ranking [J]. Computer Engineering and Applications, 2016, 52(17): 93-100. |
[6] | WU Xiaoxuan, NI Zhiwei, NI Liping. Research on fractal clustering ensemble algorithm based on cloud computing environment [J]. Computer Engineering and Applications, 2015, 51(14): 1-6. |
[7] | HUANG Shaobin1, LI Jian1,2, LIU Gang1. Clustering ensemble algorithm based on adaptive nearest neighbors [J]. Computer Engineering and Applications, 2012, 48(19): 157-162. |
[8] | LIU Limin1, FAN Xiaoping1, LIAO Zhifang2. Study on clustering ensemble selection [J]. Computer Engineering and Applications, 2012, 48(10): 1-5. |
[9] | LI Kai,WANG Lan. Research on cluster ensembles methods based on hierarchical clustering [J]. Computer Engineering and Applications, 2010, 46(27): 120-123. |
[10] | LUO Hui-lan1,2,WEI Hui1. Study on consensus function based on clustering algorithms of categorical data [J]. Computer Engineering and Applications, 2009, 45(17): 1-4. |
[11] | YANG Yan1,JIN Fan1,KAMEL Mohamed2. Latest development of clustering ensemble [J]. Computer Engineering and Applications, 2008, 44(11): 142-144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||