Recommendation Model Based on Time Aware and Interest Preference
TANG Pan, WANG Xueming
1.State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, China
2.College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
TANG Pan, WANG Xueming. Recommendation Model Based on Time Aware and Interest Preference[J]. Computer Engineering and Applications, 2023, 59(24): 268-276.
[1] HUI B,ZHANG L,ZHOU X,et al.Personalized recommendation system based on knowledge embedding and historical behavior[J].Applied Intelligence,2022,52(1):954-966.
[2] 徐鹏宇,刘华锋,刘冰,等.标签推荐方法研究综述[J].软件学报,2022,33(4):1244-1266.
XU P Y,LIU H F,LIU B,et al.Survey of tag recommendation methods[J].Journal of Software,2022,33(4):1244-1266.
[3] ZHU Z,HE Y,ZHAO X,et al.Popularity-opportunity bias in collaborative filtering[C]//Proceedings of the 14th ACM International Conference on Web Search and Data Mining.New York:ACM,2021:85-93.
[4] 刘华玲,郭渊,马俊.协同过滤中相似度算法研究进展[J].计算机工程与应用,2022,58(13):27-35.
LIU H L,GUO Y,MA J.Research progress of similarity algorithm in collaborative filtering[J].Computer Engineering and Applications,2022,58(13):27-35.
[5] 徐俊,张政,杜宣萱,等.基于项目语义的协同过滤冷启动推荐算法研究[J].小型微型计算机系统,2021,42(11):2246-2251.
XU J,ZHANG Z,DU X X,et al.Research on collaborative filtering cold start recommendation algorithm based on item semantics[J].Journal of Chinese Computer Systems,2021,42(11):2246-2251.
[6] ZHAO W,TIAN H,WU Y,et al.A new item-based collaborative filtering algorithm to improve the accuracy of prediction in sparse data[J].International Journal of Computational Intelligence Systems,2022,15(1):1-15.
[7] ZHENG Y,GAO C,LI X,et al.Disentangling user interest and conformity for recommendation with causal embedding[C]//Proceedings of the Web Conference 2021.New York:ACM,2021:2980-2991.
[8] KHAN Z Y,NIU Z,SANDIWARNO S,et al.Deep learning techniques for rating prediction:a survey of the state-of-the-art[J].Artificial Intelligence Review,2021,54(1):95-135.
[9] HE X,LIAO L,ZHANG H,et al.Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web.Republic and Canton of Geneva:International World Wide Web Conferences Steering Committee,2017:173-182.
[10] SALAMPASIS M,SIOMOS T,KATSALIS A,et al.Comparison of RNN and embeddings methods for next-item and last-basket session-based recommendations[C]//2021 13th International Conference on Machine Learning and Computing.New York:ACM,2021:477-484.
[11] 李建红,黄雅凡,王成军,等.联合多层注意力网络矩阵分解的推荐算法[J].中文信息学报,2022,36(3):120-127.
LI J H,HUANG Y F,WANG C J,et al.Recommendation algorithm of joint matrix factorization of multi-layer attention[J].Journal of Chinese Information Processing,2022,36(3):120-127.
[12] 滕传志,赵月旭.基于随机森林-马尔可夫用户冷启动推荐系统[J].计算机工程与设计,2020,41(11):3094-3098.
TENG C Z,ZHAO Y X.User cold start recommendation system based on random forest-Markov chain[J].Computer Engineering and Design,2020,41(11):3094-3098.
[13] FELTUS C.Learning algorithm recommendation framework for IS and CPS security:analysis of the RNN,LSTM,and GRU contributions[J].International Journal of Systems and Software Security and Protection,2022,13(1):1-23.
[14] SUN P,WU L,WANG M.Attentive recurrent social recommendation[C]//The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval.New York:ACM,2018:185-194.
[15] TANG J,WANG K.Personalized Top-N sequential recommendation via convolutional sequence embedding[C]//Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining.New York:ACM,2018:565-573.
[16] CHEN J,JIANG L,MA C,et al.Robust recommendation with implicit feedback via eliminating the effects of unexpected behaviors[EB/OL].[2021-12-21].https://arxiv.org/pdf/2112.11023.
[17] CHEN Q,ZHAO H,LI W,et al.Behavior sequence transformer for e-commerce recommendation in Alibaba[C]//Proceedings of the 1st International Workshop on Deep Learning Practice for High-Dimensional Sparse Data.New York:ACM,2019:1-4.
[18] LI J,WANG Y,MCAULEY J.Time interval aware self-attention for sequential recommendation[C]//Proceedings of the 13th International Conference on Web Search and Data Mining.New York:ACM,2020:322-330.
[19] MA P,WANG Y,SHEN J,et al.Lip-reading with densely connected temporal convolutional networks[C]//2021 IEEE Winter Conference on Applications of Computer Vision.Waikoloa:IEEE,2021:2856-2865.
[20] SUN F,LIU J,WU J,et al.BERT4Rec:sequential recommendation with bidirectional encoder representations from transformer[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management.New York:ACM,2019:1441-1450.
[21] LIU Z,CHEN Y,LI J,et al.Improving contrastive learning with model augmentation[EB/OL].[2022-03-25].https://arxiv.org/pdf/2203.15508.
[22] WANG Y,ZHANG H,LIU Z,et al.ContrastVAE:contrastive variational autoencoder for sequential recommendation[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management.New York:ACM,2022:2056-2066.
[23] QIU R,HUANG Z,YIN H,et al.Contrastive learning for representation degeneration problem in sequential recommendation[C]//Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining.New York:ACM,2022:813-823.
[24] LEE R,CHEN I.The time complexity analysis of neural network model configurations[C]//2020 International Conference on Mathematics and Computers in Science and Engineering.Madrid:IEEE,2020:178-183.