[1] 周帅. 无人机在输电线路巡检中的应用[J]. 电子技术, 2021, 50(8): 276-277.
ZHOU S. Application of UAVs in the inspection of power transmission lines[J]. Electronic Technology, 2021, 50(8): 276-277.
[2] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 2016 European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[3] LIN T, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988.
[4] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788.
[5] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 7263-7271.
[6] REDMON J, FARHADI A. Yolov3: an incremental improvement[EB/OL]. (2018-04-08)[2022-05-20]. https://arxiv.org/pdf/1804.02767.pdf.
[7] BOCHKOVSKIY A, WANG C, LIAO H M. Yolov4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23)[2022-05-20]. https://arxiv.org/pdf/2004.10934.pdf.
[8] Ultralytics. YOLO v5[CP/OL]. https://github.com/ultralytics/yolov5.
[9] GIRSHICK R, DONAHUE J, DARRELL T, et al. Region-based convolutional networks for accurate object detection and segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38(1): 142-158.
[10] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscata-way: IEEE, 2015: 1440-1448.
[11] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems, 2015: 91-99.
[12] 王万国, 田兵, 刘越, 等. 基于RCNN的无人机巡检图像电力小部件识别研究[J]. 地球信息科学学报, 2017, 19(2): 256-263.
WANG W G, TIAN B, LIU Y, et al. Research on power widget recognition of UAV inspection images based on RCNN[J]. Journal of Geoinformation Science, 2017, 19(2): 256-263.
[13] 戚银城, 江爱雪, 赵振兵, 等. 基于改进SSD模型的输电线路巡检图像金具检测方法[J]. 电测与仪表, 2019, 56(22): 7-12.
QI Y C, JIANG A X, ZHAO Z B, et al. Improved SSD model based on transmission line inspection image metallic detection method[J]. Electrical Measurement and Instrumentation, 2019, 56(22): 7-12.
[14] 郭敬东, 陈彬, 王仁书, 等. 基于YOLO的无人机电力线路杆塔巡检图像实时检测[J]. 中国电力, 2019, 52(7): 17-23.
GUO J D, CHEN B, WANG R S, et al. Real-time detection of UAV power line pole tower inspection images based on YOLO[J]. China Electric Power, 2019, 52(7): 17-23.
[15] 张鸥, 徐强胜, 刘靖波, 等. 无人机巡检图像电力小部件识别技术研究[J]. 科技创新导报, 2019, 16(14): 110-112.
ZHANG O, XU Q S, LIU J B, et al. Research on recognition technology of small parts of electric power from drone inspection images[J]. Science and Technology Innovation Herald, 2019, 16(14): 110-112.
[16] 赵振兵, 李延旭, 戚银城, 等. 基于动态焦点损失函数和样本平衡方法的绝缘子缺陷检测方法[J]. 电力自动化设备, 2020, 40(10): 205-211.
ZHAO Z B, LI Y X, QI Y C, et al. Insulator defect detection method based on dynamic focal loss function and sample balancing method[J]. Power Automation Equipment, 2020, 40(10): 205-211.
[17] 韩汉贤, 罗金满, 刘丽媛, 等. 基于无人机图像的输电线路部件检测方法研究[J/OL]. 电测与仪表: 1-7[2022-07-27].http://kns.cnki.net/kcms/detail/23.1202.TH.20220606.1504.
009.html.
HAN H X, LUO J M, LIU L Y, et al. Research on the detection method of transmission line components based on UAV images[J/OL]. Electrical Measurement and Instrumentation: 1-7[2022-07-27]. http://kns.cnki.net/kcms/detail/23.
1202.TH.20220606.1504.009.html.
[18] 董召杰. 基于YOLOv3的电力线关键部件实时检测[J]. 电子测量技术, 2019, 42(23): 173-178.
DONG Z J. YOLOv3-based real-time inspection of key components in power lines[J]. Electronic Measurement Technology, 2019, 42(23): 173-178.
[19] ZHAI Y, WANG Q, YANG X, et al. Multi-fitting detection on transmission line based on cascade reasoning graph network[J]. IEEE Transactions on Power Delivery, 2022, 37(6): 4858-4868.
[20] WOO S, PARK J, LEE J, et al. CBAM: convolutional block attention module[C]//Proceedings of the 2018 European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
[21] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 13-19.
[22] VIEIRA-E-SILVA A L B, DE CASTRO FELIX H, DE MENEZES CHAVES T, et al. STN PLAD: a dataset for multi-size power line assets detection in high-resolution UAV images[C]//Proceedings of the 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images. Piscataway: IEEE, 2021: 215-222. |