Multilayer 3D Point Cloud Classification Method Based on Group Self-Attention Mechanism
HE Chunxiu, JING Xianwen, HE Yongning
1.College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, Hubei 435002, China
2.Guangxi Zhuang Autonomous Region Natural Resources Information Center, Nanning 530021, China
HE Chunxiu, JING Xianwen, HE Yongning. Multilayer 3D Point Cloud Classification Method Based on Group Self-Attention Mechanism[J]. Computer Engineering and Applications, 2023, 59(24): 259-267.
[1] HU Q,YANG B,KHALID S,et al.Towards semantic segmentation of urban-scale 3D point clouds:a dataset,benchmarks and challenges[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:4977-4987.
[2] 杨必胜,梁福逊,黄荣刚.三维激光扫描点云数据处理研究进展、挑战与趋势[J].测绘学报,2017,46(10):1509-1516.
YANG B S,LIANG F X,HUANG R G.Progress,challenges and perspectives of 3D LiDAR point cloud processing[J].Acta Geodaetica et Cartographica Sinica,2017,46(10):1509-1516.
[3] 李健,姚亮.融合多特征深度学习的地面激光点云语义分割[J].测绘科学,2021,46(3):133-139.
LI J,YAO L.Ground laser point cloud smantic segmentation based on multi-feature deep learning[J].Scicnce of Surveying and Mapping,2021,46(3):133-139.
[4] 景庄伟,管海燕,臧玉府,等.基于深度学习的点云语义分割研究综述[J].计算机科学与探索,2021,15(1):1-26.
JING Z W,GUAN H Y,ZANG Y F,et al.Survey of point cloud semantic segmentation based on deep learning[J].Journal of Frontiers of Computer Science and Technology,2021,15(1):1-26.
[5] 文沛,程英蕾,余旺盛.基于深度学习的点云分类方法综述[J].激光与光电子学进展,2021,58(16):1600003.
WEN P,CHENG Y L,YU W S.Point cloud classification methods based on deep learning:a review[J].Laser & Optoelectronics Progress,2021,58(16):1600003.
[6] MATURANA D,SCHERER S.VoxNet:a 3D convolutional neural network for real-time object recognition[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).Hamburg,Germany:IEEE,2015:922-928.
[7] WU Z,SONG S,KHOSLA A,et al.3D ShapeNets:a deep representation for volumetric shapes[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Boston,MA,USA:IEEE,2015:1912-1920.
[8] KLOKOV R,LEMPITSKY V.Escape from cells:deep kd-networks for the recognition of 3D point cloud models[C]//2017 IEEE International Conference on Computer Vision(ICCV).Venice:IEEE,2017:863-872.
[9] QI C R,SU H,MO K,et al.PointNet:deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:652-660.
[10] QI C R,YI L,SU H,et al.PointNet++:deep hierarchical feature learning on point sets in a metric space[C]//Advances in Neural Information Processing Systems,2017.
[11] YU X,TANG L,RAO Y,et al.Point-BERT:pre-training 3D point cloud transformers with masked point modeling[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2022:19313-19322.
[12] DEVLIN J,CHANG M W,LEE K,et al.BERT:pre-training of deep bidirectional transformers for language understanding[J].arXiv:1810.10485,2018.
[13] 王利媛,付丽华.基于注意力机制点卷积网络的机载LiDAR点云分类[J].激光与光电子学进展,2022,59(10):1028007.
WANG L Y,FU L H.Airborne LiDAR point cloud classification based on attention mechanism point convolutional network[J].Laser & Optoelectronics Progress,2022,59(10):1028007.
[14] 王江安,何娇,庞大为.基于动态图卷积网络的点云分类和分割网络[J].激光与光电子学进展,2021,58(12):1215008.
WANG J A,HE J,PANG D W.Point cloud classification and segmentation network based on dynamic graph convolutional network[J].Laser & Optoelectronics Progress,2021,58(12):1215008.
[15] ASHISH V,NOAM S,NIKI P,et al.Attention is all you need[J].arXiv:1706.03762,2017.
[16] MOENNING C,DODGSON N A.Fast marching farthest point sampling:UCAM-CL-TR-562[R].University of Cambridge,2003.
[17] 邱永红,曾永年,邹滨.KDT树:一种多维空间数据索引结构[J].计算机工程与应用,2009,45(8):29-31.
QIU Y H,ZENG Y N,ZOU B.KDT tree:multi-dimensional index structure for spatial data[J].Computer Engineering and Applications,2009,45(8):29-31.
[18] DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.An image is worth 16x16 words:transformers for image recognition at scale[J].arXiv:2010.11929,2020.
[19] LIU Z,LIN Y,CAO Y,et al.Swin transformer:hierarchical vision transformer using shifted windows[J].arXiv:2103.14030,2021.
[20] MAAS A L,HANNUN A Y,NG A Y.Rectifier nonlinearities improve neural network acoustic models[C]//ICML Workshop on Deep Learing for Audio,Speech and Language Processing,Atlanta,Georgia,USA,2013.
[21] BA J L,KIROS J R,HINTON G E.Layer normalization[J].arXiv:1607.06450,2016.
[22] OLAF R,PHILIPP F,THOMAS B.U-net:convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention(MICCAI 2015).Cham:Springer International Publishing,2015:234-241.
[23] 项学泳,李广云,王力,等.利用局部几何特征与空洞邻域的点云语义分割[J].武汉大学学报(信息科学版),2023,48(4):534-541.
XIANG X Y,LI G Y,WANG L,et al.Semantic segmentation of point clouds using local geometric features and dilated neighborhoods[J].Geomatics and Information Science of Wuhan University,2023,48(4):534-541.
[24] GUO M H,CAI J X,LIU Z N,et al.PCT:point cloud transformer[J].Computational Visual Media,2021,7(2):187-199.
[25] HU Q,YANG B,XIE L,et al.RandLa-net:efficient semantic segmentation of large-scale point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:11108-11117.
[26] THOMAS H,QI C R,DESCHAUD J E,et al.KPConv:flexible and deformable convolution for point clouds[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:6411-6420.
[27] ZHOU B L,ADITYA K,AGATA L,et al.Learning deep features for discriminative localization[J].arXiv:1512.04150,2015.
[28] RAMPRASAATH R S,MICHAEL C,ABHISHEK D,et al.Grad-CAM:visual explanations from deep networks via gradient-based localization[J].International Journal of Computer Vision,2020,128(2):336-359.
HUANG Xiankai, ZHANG Jiayu, WANG Xinyu, WANG Xiaochuan, LIU Ruijun.
Survey of Dense Video Captioning
[J]. Computer Engineering and Applications, 2023, 59(12): 28-48.