Computer Engineering and Applications ›› 2023, Vol. 59 ›› Issue (17): 48-66.DOI: 10.3778/j.issn.1002-8331.2212-0108
• Research Hotspots and Reviews • Previous Articles Next Articles
XU Guoxin, LI Leixiao, HE Jiabin, GAO Haoyu
Online:
2023-09-01
Published:
2023-09-01
徐国新,李雷孝,何嘉彬,高昊昱
XU Guoxin, LI Leixiao, HE Jiabin, GAO Haoyu. Review of Research on Driver Seat Belt Detection Methods[J]. Computer Engineering and Applications, 2023, 59(17): 48-66.
徐国新, 李雷孝, 何嘉彬, 高昊昱. 驾驶员安全带检测方法研究综述[J]. 计算机工程与应用, 2023, 59(17): 48-66.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2212-0108
[1] FEBRES J D,GARCIA H S,HERRERA S,et al.Influence of seat-belt use on the severity of injury in traffic accidents[J].European Transport Research Review,2020,12(1):1-12. [2] ACOSTA R L,KWIGIZILE V,OH J S,et al.Presence of additional safety belt enforcement increases safety belt use by drivers[J].Transportation Research Record,2020,2674(3):93-99. [3] 李明熹,林正奎,曲毅.计算机视觉下的车辆目标检测算法综述[J].计算机工程与应用,2019,55(24):20-28. LI M X,LIN Z K,QU Y.Survey of vehicle object detection algorithm in computer vision[J].Computer Engineering and Applications,2019,55(24):20-28. [4] CONAWAY B J.Seat belt status alerting unit:US6002325[P]. 1999-12-14. [5] BATENKOW V,BURGLER S,KABISCH C,et al.Seat belt lock with hall sensor:US9663064[P].2017-05-30. [6] YOSHIMOCHI S,ANDO H.Detection system of vehicle seat belt wearing:JP2018012414[P].2018-01-25. [7] 宋志强,曹立波,欧阳志高,等.集成主被动式安全带的性能评估及优化分析[J].中国机械工程,2019,30(21):2567-2576. SONG Z Q,CAO L B,OUYANG Z G,et al.Performance evaluation and optimization analysis for integrated active and passive seat belts[J].China Mechanical Engineering,2019,30(21):2567-2576. [8] CHENG H C,CHANG C C,WANG W J.An effective seat belt detection system on the bus[C]//2020 IEEE International Conference on Consumer Electronics-Taiwan(ICCE-Taiwan),2020:1-2. [9] 葛如海,胡满江,符凯.基于灰度积分投影的安全带佩戴识别方法[J].汽车工程,2012,34(9):787-790. GE R H,HU M J,FU K.A method of recognizing seat-belt wear based on gray scale integral projection[J].Automotive Engineering,2012,34(9):787-790. [10] YU D,ZHENG H,LIU C.Driver’s seat belt detection in crossroad based on gradient orientation[C]//2013 International Conference on Information Science and Cloud Computing Companion,2013:618-622. [11] 张晋.基于计算机视觉的驾驶员安全带佩戴的识别方法研究[D].哈尔滨:哈尔滨工程大学,2014. ZHANG J.Study on recognizing seat-belt wear based on computer vision[D].Harbin:Harbin Engineering University,2014. [12] QIU Y W,PAN J,ZHOU N,et al.Drivers’ seat belts detection at crossroads based on openCV[C]//Applied Mechanics and Materials,2014:2996-3000. [13] ARTAN Y,BULAN O,LOCE R P,et al.Passenger compartment violation detection in HOV/HOT lanes[J].IEEE Transactions on Intelligent Transportation Systems,2015,17(2):395-405. [14] 莫文英.基于图像处理与机器学习的车标及安全带识别研究[D].广州:广州大学,2018. MO W Y.Study on recognition of vehicle sign and safety band based on image processing and machine learning[D].Guangzhou:Guangzhou University,2018. [15] ZHANG D.Analysis and research on the images of drivers and passengers wearing seat belt in traffic inspection[J].Cluster Computing,2019,22(4):9089-9095. [16] 朱烙盛.智能交通中的驾驶员违章行为识别算法研究及软件系统设计[D].广州:华南理工大学,2018. ZHU L S.Research on recognition algorithm of driver illegal behavior and software system design in ITS[D].Guangzhou:South China University of Technology,2018. [17] YANG Z,XIONG H,CAI Z,et al.A new method of vision-based seat belt detection[J].International Journal of Embedded Systems,2019,11(6):755-763. [18] GUO H,LIN H,ZHANG S,et al.Image-based seat belt detection[C]//Proceedings of 2011 IEEE International Conference on Vehicular Electronics and Safety,Beijing,2011:161-164. [19] QIN X H,CHENG C,LI G,et al.Efficient seat belt detection in a vehicle surveillance application[C]//2014 9th IEEE Conference on Industrial Electronics and Applications,Hangzhou,2014:1247-1250. [20] 葛如海,胡满江,张学荣,等.基于GA-BP的安全带佩戴识别方法[J].江苏大学学报(自然科学版),2014,35(2):125-131. GE R H,HU M J,ZHANG X R,et al.Recognition method of safety belt wearing based on GA-BP[J].Journal of Jiangsu University(Natural Science Edition),2014,35(2):125-131. [21] 钟铭恩,黄伟,温程璐,等.基于红外标记视觉的安全带佩戴规范性检测[J].汽车工程,2017,39(7):760-766. ZHONG M E,HUANG W,WEN C L,et al.Detection on proper wearing of seat belt based on infrared mark vision[J].Automotive Engineering,2017,39(7):760-766. [22] ZHOU B,CHEN L,TIAN J,et al.Learning-based seat belt detection in image using salient gradient[C]//2017 12th IEEE Conference on Industrial Electronics and Applications(ICIEA),Siem Reap,2017:547-550. [23] LI W,LU J,LI Y,et al.Seatbelt detection based on cascade adaboost classifier[C]//2013 6th International Congress on Image and Signal Processing(CISP),Hangzhou,2013:783-787. [24] XU J,SONG K.Study on automatic detection method of automobile safety belt based on the improvement of Adaboost algorithm[C]//2015 3rd International Conference on Mechatronics and Industrial Informatics(ICMII 2015),2015:1045-1049. [25] 李赓.基于Adaboost的安全带检测方法[D].合肥:合肥工业大学,2015. LI G.Seat belt detection based on the Adaboost[D].Hefei:Hefei University of Technology,2015. [26] 胡满江.基于车载机器视觉的安全带识别方法研究[D].镇江:江苏大学,2014. HU M J.Research on seat blet identification based on vehicle-mounted machine vision[D].Zhenjiang:Jiangsu University,2014. [27] XI H,ZHANG Y,ZHANG Y.Detection of safety features of drivers based on image processing[C]//CICTP 2018:Intelligence,Connectivity,and Mobility.Reston,VA:American Society of Civil Engineers,2018:2098-2109. [28] ZHUANG F,QI Z,DUAN K,et al.A comprehensive survey on transfer learning[J].Proceedings of the IEEE,2020,109(1):43-76. [29] CHUN S,HAMIDI G N,CHOI J,et al.NADS-Net:a nimble architecture for driver and seat belt detection via convolutional neural networks[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops,Seoul,2019:2413-2421. [30] 王欣然,田启川,张东.人脸口罩佩戴检测研究综述[J].计算机工程与应用,2022,58(10):13-26. WANG X R,TIAN Q C,ZHANG D.Review of research on face mask wearing detection[J].Computer Engineering and Applications,2022,58(10):13-26. [31] SHORTEN C,KHOSHGOFTAAR T M.A survey on image data augmentation for deep learning[J].Journal of Big Data,2019,6(1):1-48. [32] 周彬.面向卡口监控的安全带图像检测的应用与研究[D].武汉:武汉科技大学,2018. ZHOU B.Application and research of safety belt image detection in bayonet surveillance[D].Wuhan:Wuhan University of Science and Technology,2018. [33] 王鑫鹏,王晓强,林浩,等.深度学习典型目标检测算法的改进综述[J].计算机工程与应用,2022,58(6):42-57. WANG X P,WANG X Q,LIN H,et al.Review on improvement of typical object detection algorithms in deep learning[J].Computer Engineering and Application,2022,58(6):42-57. [34] ZHONG Z,ZHENG L,KANG G,et al.Random erasing data augmentation[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2020:13001-13008. [35] ZHAO Y,SHI Y,WANG Z.The improved YOLOV5 algorithm and its application in small target detection[C]//International Conference on Intelligent Robotics and Applications,Harbin,2022:679-688. [36] INOUE H.Data augmentation by pairing samples for images classification[J].arXiv:1801.02929,2018. [37] ZHANG H,CISSE M,DAUPHIN Y N,et al.Mixup:beyond empirical risk minimization[J].arXiv:1710.09412,2017. [38] DEVRIES T,TAYLOR G W.Improved regularization of convolutional neural networks with cutout[J].arXiv:1708.04552,2017. [39] HARRIS E,MARCU A,PAINTER M,et al.Fmix:enhancing mixed sample data augmentation[J].arXiv:2002.12047,2020. [40] YUN S,HAN D,OH S J,et al.Cutmix:regularization strategy to train strong classifiers with localizable features[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:6023-6032. [41] GUI J,SUN Z,WEN Y,et al.A review on generative adversarial networks:algorithms,theory,and applications[J].IEEE Transactions on Knowledge & Data Engineering,2023,35(4):3313-3332. [42] CUBUK E D,ZOPH B,MANE D,et al.Autoaugment:learning augmentation strategies from data[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:113-123. [43] HO D,LIANG E,CHEN X,et al.Population based augmentation:efficient learning of augmentation policy schedules[C]//International Conference on Machine Learning,Long Beach,2019:2731-2741. [44] LIM S,KIM I,KIM T,et al.Fast AutoAugment[J].arXiv:1905.00397,2019. [45] MULLER S G,HUTTER F.Trivialaugment:tuning-free yet state-of-the-art data augmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2021:774-782. [46] LI Z,LIU F,YANG W,et al.A survey of convolutional neural networks:analysis,applications,and prospects[J].IEEE Transactions on Neural Networks and Learning Systems,2022,33(12):6999-7019. [47] LIU W,WANG Z,LIU X,et al.A survey of deep neural network architectures and their applications[J].Neurocomputing,2017,100(234):11-26. [48] LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324. [49] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90. [50] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409.1556,2014. [51] SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Boston,2015:1-9. [52] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Seattle,2016:770-778. [53] IANDOLA F N,HAN S,MOSKEWICZ M W,et al.SqueezeNet:AlexNet-level accuracy with 50x fewer parameters and <0.5?MB model size[J].arXiv:1602.07360,2016. [54] HOWARD A G,ZHU M,CHEN B,et al.Mobilenets:efficient convolutional neural networks for mobile vision applications[J].arXiv:1704.04861,2017. [55] ZHANG X,ZHOU X,LIN M,et al.Shufflenet:an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Salt Lake City,2018:6848-6856. [56] TAN M,LE Q.Efficientnet:rethinking model scaling for convolutional neural networks[C]//International Conference on Machine Learning,Long Beach,2019:6105-6114. [57] HAN K,WANG Y,TIAN Q,et al.Ghostnet:more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:1580-1589. [58] DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.An image is worth 16×16 words:transformers for image recognition at scale[J].arXiv:2010.11929,2020. [59] YU C,XIAO B,GAO C,et al.Lite-hrnet:a lightweight high-resolution network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:10440-10450. [60] MA H,XIA X,WANG X,et al.MoCoViT:mobile convolutional vision transformer[J].arXiv:2205.12635,2022. [61] LIU Z,MAO H,WU C Y,et al.A convnet for the 2020s[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2022:11976-11986. [62] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Columbus,2014:580-587. [63] GIRSHICK R.Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision(ICCV),Santiago,2015:1440-1448. [64] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,39(6):1137-1149. [65] SHELHAMER E,LONG J,DARRELL T.Fully convolutional networks for semantic segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(4):640-651. [66] BADRINARAYANAN V,KENDALL A,CIPOLLA R.Segnet:a deep convolutional encoder-decoder architecture for image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481-2495. [67] HE K,GKIOXARI G,DOLLAR P,et al.Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision,Venice,2017:2961-2969. [68] CAI Z,VASCONCELOS N.Cascade R-CNN:delving into high quality object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:6154-6162. [69] PANG J,CHEN K,SHI J,et al.Libra R-CNN:towards balanced learning for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:821-830. [70] LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:2980-2988. [71] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//European Conference on Computer Vision,Amsterdam,2016:21-37. [72] FU C Y,LIU W,RANGA A,et al.DSSD:deconvolutional single shot detector[J].arXiv:1701.06659,2017. [73] LI Z,ZHOU F.FSSD:feature fusion single shot multibox detector[J].arXiv:1712.00960,2017. [74] SHEN Z,LIU Z,LI J,et al.DSOD:learning deeply supervised object detectors from scratch[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:1919-1927. [75] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Seattle,2016:779-788. [76] REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:7263-7271. [77] REDMON J,FARHADI A.Yolov3:an incremental improvement[J].arXiv:1804.02767,2018. [78] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.Yolov4:optimal speed and accuracy of object detection[J].arXiv:2004.10934,2020. [79] GE Z,LIU S,WANG F,et al.Yolox:exceeding yolo series in 2021[J].arXiv:2107.08430,2021. [80] 付春芬.基于深度学习的安全带检测方法研究[D].武汉:华中科技大学,2015. FU C F.Research on seatbelt detection method based on deep learning[D].Wuhan:Central China University of Science and Technology,2015. [81] CHEN Y,TAO G,REN H,et al.Accurate seat belt detection in road surveillance images based on CNN and SVM[J].Neurocomputing,2018,274:80-87. [82] 霍星,费志伟,赵峰,等.深度学习在驾驶员安全带检测中的应用[J].计算机科学,2019,46(6A):182-187. HUO X,FEI Z W,ZHAO F,et al.Application of deep learning in driver’s safety belt detection[J].Computer Science,2019,46(6A):182-187. [83] 吕洁.视频大数据安全带智能识别技术[D].北京:中国石油大学,2019. LV J.Seat belt intelligent recognition technology based on video big data[D].Beijing:China University of Petroleum,2019. [84] ZHOU B,CHEN D,WANG X.Seat belt detection using convolutional neural network BN-Alexnet[C]//International Conference on Intelligent Computing,Liverpool,2017:384-395. [85] 田文洪,曾柯铭,莫中勤,等.基于卷积神经网络的驾驶员不安全行为识别[J].电子科技大学学报,2019,48(3):381-387. TIAN W H,ZENG K M,MO Z Q,et al.Recognition of unsafe driving behaviors based on convolutional neural network[J].Journal of University of Electronic Science and Technology,2019,48 (3):381-387. [86] CHEN G,LV F,ZHAN Y,et al.Seatbelt recognition method based on convolutional attention mechanism[C]//2019 IEEE 2nd International Conference on Computer and Communication Engineering Technology(CCET),Beijing,2019:187-192. [87] ?ENER A ?,INCE I F,BAYDARGIL H B,et al.Deep learning based automatic vertical height adjustment of incorrectly fastened seat belts for driver and passenger safety in fleet vehicles[J].Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,2022,236(4):639-654. [88] NAIK D S B,LAKSHMI G S,SAJJA V R,et al.Driver’s seat belt detection using CNN[J].Turkish Journal of Computer and Mathematics Education(TURCOMAT),2021,12(5):776-785. [89] BALTAXE M,MERGUI R,NISTEL K,et al.Marker-less vision-based detection of improper seat belt routing[C]//2019 IEEE Intelligent Vehicles Symposium(IV),Paris,2019:783-789. [90] HOSAM O.Deep learning-based car seatbelt classifier resilient to weather conditions[J].Int J Eng Technol,2020,9(1):229-237. [91] MADURI P K,SINGH G,SHARMA S,et al.Seat belt and helmet detection using deep learning[C]//2021 3rd International Conference on Advances in Computing,Communication Control and Networking(ICAC3N),Shanghai,2021:476-480. [92] 杨凯杰,章东平,杨力.深度学习的汽车驾驶员安全带检测[J].中国计量大学学报,2017,28(3):326-333. YANG K J,ZHANG D P,YANG L.Safety belt detection based on deep learning[J].Journal of China University of Metrology,2017,28(3):326-333. [93] FERNANDEZ S M,BOSQUET B,MUCIENTES M,et al.Real-time visual detection and tracking system for traffic monitoring[J].Engineering Applications of Artificial Intelligence,2019,85:410-420. [94] ELIHOS A,ALKAN B,BALCI B,et al.Comparison of image classification and object detection for passenger seat belt violation detection using NIR & RGB surveillance camera images[C]//2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance(AVSS),2018:1-6. [95] BALCI B,ALKAN B,ELIHOS A,et al.NIR camera based mobile seat belt enforcement system using deep learning techniques[C]//2018 14th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS),Las Palmas de Gran Canaria,2018:247-252. [96] YANG D,ZANG Y,LIU Q.Study of detection method on real-time and high precision driver seatbelt[C]//2020 Chinese Control And Decision Conference(CCDC),Hefei,2020:79-86. [97] YANG T,YANG J,MENG J.Driver’s illegal driving behavior detection with SSD approach[C]//2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning(PRML),Chengdu,2021:109-114. [98] 吴天舒,张志佳,刘云鹏,等.结合YOLO检测和语义分割的驾驶员安全带检测[J].计算机辅助设计与图形学学报,2019,31(1):126-131. WU T S,ZHANG Z J,LIU Y P,et al.Driver seat belt detection based on YOLO detection and semantic segmentation[J].Journal of Computer-Aided Design and Computer Graphics,2019,31(1):126-131. [99] JING Y Q,WU T S,LI J,et al.GPU acceleration design method for driver’s seatbelt detection[C]//2019 14th IEEE International Conference on Electronic Measurement & Instruments(ICEMI),Changsha,2019:949-953. [100] WU T S,ZHANG Z J,LIU Z M,et al.Detection and implementation of Driver’s seatbelt based on FPGA[J].Journal of Physics:Conference Series,2019,1229(1):012075. [101] KASHEVNIK A,ALI A,LASHKOV I,et al.Seat belt fastness detection based on image analysis from vehicle in-cabin camera[C]//2020 26th Conference of Open Innovations Association(FRUCT),Yaroslavl,2020:143-150. [102] WANG D.Intelligent detection of vehicle driving safety based on deep learning[J].Wireless Communications & Mobile Computing,2022,2022:1095524. [103] ?OROVI? A,ILI? V,DURI? S,et al.The real-time detection of traffic participants using YOLO algorithm[C]//2018 26th Telecommunications Forum(TELFOR),Belgrade,2018:1-4. [104] 田坤,李冠,赵卫东.基于YOLO和极限学习机的驾驶员安全带检测模型研究[J].计算机应用与软件,2019,36(11):196-201. TIAN K,LI G,ZHAO W D.Driver’s seatbelt detection based on YOLO and extreme learning machine[J].Computer Applications and Software,2019,36(11):196-201. [105] MATHEW A T,THOMAS C M,KRISHNAN A G,et al.Automated censorable content identification in videos using deep learning[C]//2020 International Conference on Data Analytics for Business and Industry:Way Towards a Sustainable Economy(ICDABI),Da Nang,2020:1-6. [106] LUO J,LU J,YUE G.Seatbelt detection in road surveillance images based on improved dense residual network with two-level attention mechanism[J].Journal of Electronic Imaging,2021,30(3):033036. [107] WANG Z,MA Y.Detection and recognition of stationary vehicles and seat belts in intelligent Internet of Things traffic management system[J].Neural Computing and Applications,2022,34(5):3513-3522. [108] KHALID S B,HAZELA B.Employing real-time object detection for traffic monitoring[C]//Proceedings of the International Conference on Innovative Computing & Communication(ICICC),Xiamen,2021. [109] 谷玉海,曹梦婷,修嘉芸,等.基于YOLOv4网络的违章行为检测算法[J].重庆理工大学学报(自然科学),2021,35(8):114-121. GU Y H,CAO M T,XIU J Y,et al.Algorithm for detecting violations based on YOLOv4 network[J].Journal of Chongqing University of Technology(Natural Science),2021,35(8):114-121. [110] HOSSEINI S,FATHI A.Automatic detection of vehicle occupancy and driver’s seat belt status using deep learning[J].Signal,Image and Video Processing,2022:1-9. [111] YI Q,YI Q.Safety belt wearing detection algorithm based on human joint points[C]//2021 IEEE International Conference on Consumer Electronics and Computer Engineering(ICCECE),Nanchang,2021:538-541. [112] KIM G,KIM H,KIM K,et al.Integrated in-vehicle monitoring system using 3D human pose estimation and seat belt segmentation[J].arXiv:2204.07946,2022. |
[1] | CHEN Jishang, Abudukelimu Halidanmu, LIANG Yunze, Abulizi Abudukelimu, Aishan Mikelayi, GUO Wenqiang. Review of Application of Deep Learning in Symbolic Music Generation [J]. Computer Engineering and Applications, 2023, 59(9): 27-45. |
[2] | JIANG Qiuxiang, GUO Weipeng, WANG Zilong, OUYANG Xingtao, LONG Ruirui. Application and Prospect of Python Language in Field of Hydrology and Water Resources [J]. Computer Engineering and Applications, 2023, 59(9): 46-58. |
[3] | CAI Zhengyi, ZHAO Jieyu, ZHU Feng. Single-Stage Object Detection with Fusion of Point Cloud and Image Feature [J]. Computer Engineering and Applications, 2023, 59(9): 140-149. |
[4] | LUO Huilan, CHEN Han. Spatial-Temporal Convolutional Attention Network for Action Recognition [J]. Computer Engineering and Applications, 2023, 59(9): 150-158. |
[5] | XIE Chunhui, WU Jinming, XU Huaiyu. Small Object Detection Algorithm Based on Improved YOLOv5 in UAV Image [J]. Computer Engineering and Applications, 2023, 59(9): 198-206. |
[6] | LI Wenju, CHU Wanghui, CUI Liu, SU Pan, ZHANG Gan. 3D Object Detection Method Combining on Graph Sampling and Graph Attention [J]. Computer Engineering and Applications, 2023, 59(9): 237-244. |
[7] | ZHANG Ting, ZHANG Xingzhong, WANG Huimin, YANG Gang, WANG Dawei. 3D Object Detection in Substation Scene Based on Graph Neural Network [J]. Computer Engineering and Applications, 2023, 59(9): 329-336. |
[8] | LIU Hualing, PI Changpeng, ZHAO Chenyu, QIAO Liang. Review of Cross-Domain Object Detection Algorithms Based on Depth Domain Adaptation [J]. Computer Engineering and Applications, 2023, 59(8): 1-12. |
[9] | HE Jiafeng, CHEN Hongwei, LUO Dehan. Review of Real-Time Semantic Segmentation Algorithms for Deep Learning [J]. Computer Engineering and Applications, 2023, 59(8): 13-27. |
[10] | ZHANG Yanqing, MA Jianhong, HAN Ying, CAO Yangjie, LI Jie, YANG Cong. Review of Research on Real-World Single Image Super-Resolution Reconstruction [J]. Computer Engineering and Applications, 2023, 59(8): 28-40. |
[11] | DAI Chao, LIU Ping, SHI Juncai, REN Hongjie. Regularized Extraction of Remotely Sensed Image Buildings Using U-Shaped Networks [J]. Computer Engineering and Applications, 2023, 59(8): 105-116. |
[12] | ZHANG Zhaoyang, ZHANG Shang, WANG Hengtao, RAN Xiukang. Multi-Head Attention Detection of Small Targets in Remote Sensing at Multiple Scales [J]. Computer Engineering and Applications, 2023, 59(8): 227-238. |
[13] | LI Abiao, GUO Hao, QI Chang, AN Jubai. Dense Object Detection in Remote Sensing Images Under Complex Background [J]. Computer Engineering and Applications, 2023, 59(8): 247-253. |
[14] | LI Zhuorong, TANG Yunqi. Multimodal Biometric Fusion Model Based on Deep Learning [J]. Computer Engineering and Applications, 2023, 59(7): 180-189. |
[15] | WEI Jian, ZHAO Xu, LI Lianpeng. Siamese Network Weak Target Tracking Algorithm Fused with Location Information Attention [J]. Computer Engineering and Applications, 2023, 59(7): 198-206. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||