Computer Engineering and Applications ›› 2023, Vol. 59 ›› Issue (13): 61-73.DOI: 10.3778/j.issn.1002-8331.2210-0470
• Research Hotspots and Reviews • Previous Articles Next Articles
WEI Jian, SONG Xiaoqing, WANG Qinzhao
Online:
2023-07-01
Published:
2023-07-01
魏健,宋小庆,王钦钊
WEI Jian, SONG Xiaoqing, WANG Qinzhao. Research Status of Black-Box Intelligent Adversarial Attack Algorithms[J]. Computer Engineering and Applications, 2023, 59(13): 61-73.
魏健, 宋小庆, 王钦钊. 黑盒攻击智能识别对抗算法研究现状[J]. 计算机工程与应用, 2023, 59(13): 61-73.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2210-0470
[1] SZEGEDY C,ZAREMBA W,SUTSKEVER I,et al.Intriguing properties of neural networks[J].arXiv:1312.6199,2013. [2] PAPERNOT N,MCDANIEL P,GOODFELLOW I,et al.Practical black-box attacks against machine learning[C]//Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security,2017:506-519. [3] IAN J G,JONATHON S,CHRISTIAN S.Explaining and harnessing adversarial examples[J].arXiv:1412.6572,2014. [4] MOOSAVI-DEZFOOLI S,FAWZI A,FROSSARD P.DeepFool:a simple and accurate method to fool deep neural networks[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2016:2574-2582. [5] CARLINI N,WAGNER D.Towards evaluating the robustness of neural networks[C]//Proceedings of 2017 IEEE Symposium on Security and Privacy,2017:39-57. [6] EYHOLT K,EVTIMOV I,FERNANDES E,et al.Robust physicalworld attacks on deep learning visual classification[C]//Proceedings of CVPR 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2018:1625-1634. [7] SHARIF M,BHAGAVATULA S,BAUER L,et al.Accessorize to a crime:real and stealthy attacks on state-of-the-art face recognition[C]//Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security,2016:1528-1540. [8] DUAN R,MA X,WANG Y,et al.Adversarial camouflage:hiding physical-world attacks with natural styles[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2020:997-1005. [9] DONG Y,SU H,WU B,et al.Efficient decision-based black-box adversarial attacks on face recognition[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2019:7706-7714. [10] ZHONG Y,LIU X,ZHAI D,et al.Shadows can be dangerous:stealthy and effective physical-world adversarial attack by natural phenomenon[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2022:15324-15333. [11] KONG Z,GUO J,LI A,et al.PhysGAN generating physical world resilient adversarial examples for autonomous driving[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2020:14254-14263. [12] MOHAMMAD A A K J,AKHTAR N,BENAMOUN M,et al.Attack to explain deep representation[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2020:9540-9549. [13] WANG C,WANG J,LIN Q.Adversarial attacks and defenses in deep learning:a survey[C]//Proceedings of the 17 International Conference on Intelligent Computing(ICIC),2021:450-461. [14] 蔡秀霞,杜慧敏.对抗攻击及对抗样本生成方法综述[J].西安邮电大学学报,2021,26(1):67-75. CAI X X,DU H M.Survey on adversarial example generation and adversarial attack method[J].Journal of XI'AN University of Posts and Telecommunications,2021,26(1):67-75. [15] 潘文雯,王新宇,宋明黎,等.对抗样本生成技术综述[J].软件学报,2020,31(1):67-81. PAN W W,WANG X Y,SONG M L,et al.Survey on generating adversarial examples[J].Journal of Software,2020,31(1):67-81. [16] 白祉旭,王衡军,郭可翔.基于深度神经网络的对抗样本技术综述[J].计算机工程与应用,2021,57(23):61-70. BAI Z X,WANG H J,GUO K X.Summary of adversarial examples techniques based on deep neural networks[J].Computer Engineering and Applications,2021,57(23):61-70. [17] 王树伟,周刚,巨星海,等.基于生成对抗网络的恶意软件对抗样本生成综述[J].信息工程大学学报,2019,20(5):616-621. WANG S W,ZHOU G,JU X H,et al.Review of malware adversarial sample generation on generative adversarial networks[J].Journal of Information Engineering University,2019,20(5):616-621., [18] 叶启松,戴旭初.攻击分类器的对抗样本生成技术的现状分析[J].计算机工程与应用,2020,56(5):34-42. YE Q S,DAI X C.State of the art on adversarial example generation methods for attacking classifier[J].Computer Engineering and Applications,2020,56(5):34-42. [19] PAPERNOT N,MCDANIEL PGOODFELLOW I,et al.Practical black-box attacks against machine learning[J].arXiv:1602.02697,2016. [20] WANG B,GONG N Z.Stealing hyperparameters in machine learning[C]//Proceedings of 2018 IEEE Symposium on Security and Privacy,2018:36-52. [21] ZHU Y,CHENG Y,ZHOU H,et al.Hermes attack:steal DNN models with lossless inference accuracy[J].arXiv:2006.12784,2020. [22] TRAMER F,ZHANG F,JUELS A,et al.Stealing machine learning models via prediction APIs[J].arXiv:1609.02943,2016. [23] OH S J,AUGUSTIN M,SCHIELE B,et al.Whitening black-box neural networks[J].arXiv:1711.01768,2017. [24] ORENONDY T,SCHIELE B,FRITZ M.Knockoff nets:stealing functionality of BlackBox models[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2019:4954-4963. [25] STEINHARDT J,KOH P W,LIANG P.Certified defenses for data poisoning attacks[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems,2017:3520-3532. [26] ZHU C,HUANG W R,SHAFAHI A,et al.Transferable clean-label poisoning attacks on deep neural nets[J].arXiv:1905.05897,2019. [27] SHAFAHI A,HUANG W R,NAJIBI M,et al.Poison frogs! targeted clean-label poisoning attacks on neural networks[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems,2018:6106-6116. [28] XIAO H,BIGGIO B,NELSON B,et al.Support vector machines under adversarial label contamination[J].Neurocomputing,2015,160:53-62. [29] WENGER E,PASSANANTI J,BHAGOJI A N,et al.Backdoor attacks against deep learning systems in the physical world[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2021:6206-6215. [30] CHEN X,LIU C,LI B,et al.Targeted backdoor attacks on deep learning systems using data poisoning[J].arXiv:1712.05526,2017. [31] KOH P W,LIANG P.Understanding black-box predictions via influence functions[J].arXiv:1703.04730,2017. [32] JI Y,ZHANG X,WANG T.Backdoor attacks against learning systems[C]//Proceedings of 2017 IEEE Conference on Communications and Network Security(CNS),2017:1-9. [33] ZHAO S,MA X,ZHENG X,et al.Clean-label backdoor attacks on video recognition models[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2020:14431-14440. [34] YIN H,MOLCHANOV P,ALVAREZ J M,et al.Dreaming to distill datafree knowledge transfer via deepinversion[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020. [35] ZHOU M,WU J,LIU Y,et al.DaST:datafree substitute training for adversarial attacks[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2020:231-240. [36] WANG W,YIN B,YAO T,et al.Delving into data:effectively substitute training for black-box attack[C]// Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2021:4759-4768. [37] ZHANG C,BENZ P,IMITAZ T.Understanding adversarial examples from the mutual influence of images and perturbations[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2020:14509-14518. [38] OH S J,AUGUSTIN M,SCHIELE B,et al.Towards reverse-engineering black-box neural networks[J].arXiv:1711.01768,2017. [39] DONG Y,LIAO F,PANG T,et al.Boosting adversarial attacks with momentum[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2018:9185-9193. [40] BRENDEL W,RAUBER J,BETHGE M.Decision-based adversarial attacks:reliable attacks against black-box machine learning models[J].arXiv:1712.04248,2017. [41] CHEN J,JORDAN M I.HopSkipJumpAttack:a query-efficient decision-based attack[C]//Proceedings of 2020 IEEE Symposium on Security and Privacy(SP),2020:1277-1294. [42] WANG D,LIN J,WANG Y.Query-efficient adversarial attack based on latin hypercube sampling[J].arXiv:2207.02391,2022. [43] LIU Y,DEZFOOLI S M M,FROSSARD P.A geometry-inspired decision-based attack[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision,2019:4889-4897. [44] RAHMATI A,DEZFOOLI S M M,FROSSARD P,et al.GeoDA:a geometric framework for black box adversarial attacks[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2020:8443-8452. [45] LI H,XU X,ZHANG X,et al.QEBA:query efficient boundary based blackbox attack[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2020:1221-1230. [46] LI J,JI R,LIU H,et al.Projection & probability-driven blackbox attack[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2020:359-368. [47] LIU Y,CHEN X,LIU C,et al.Delving into transferable adversarial examples and black-box attacks[J].arXiv:1611.02770,2016. [48] KURAKIN A,GOODFELLOW I J,BENGIO S,et al.Adversarial attacks and defences competition[J].arXiv:1804.00097,2018. [49] LI Y,BAI S,ZHOU Y,et al.Learning transferable adversarial examples via ghost networks[J].arXiv:1812. 03413,2018. [50] WU D,WANG Y,XIA S,et al.Skip connections matter:on the transferability of adversarial examples generated with ResNets[J].arXiv:2002.05990,2020. [51] WU L,ZHU Z,TAI C,et al.Understanding and enhancing the transferability of adversarial examples[J].arXiv:1802. 09707,2018. [52] FENG X,YAO H,CHE W,et al.An effective way to boost black-box adversarial attack[C]//Proceedings of 26th International Conference on Multimedia Modeling,2020:393-404. [53] SHI U,WANG S,HAN Y.Curls & Whey boosting blackbox adversarial attacks[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2019:6512-6520. [54] XIE C,ZHANG Z,ZHOU Y,et al.Improving transferability of adversarial examples with input diversity[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2019:2725-2734. [55] WANG X,HE K.Enhancing the transferability of adversarial attacks through variance tuning[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2021:1924-1933. [56] LI M,DENG C,LI T,et al.Towards transferable targeted attack[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2020:638-646. [57] YOSINSKI J,CLUNE J,BENGIO Y,et al.How transferable are features in deep neural networks?[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems,2014. [58] INKAWHICH N,WEN W,LI H,et al.Feature space perturbations yield more transferable adversarial examples[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2019:7066-7074. [59] CHENG M,LE T,CHEN P,et al.Query-efficient hard-label black-box attack:an optimization-based approach[J].arXiv:1807.04457,2018. [60] DONG Y,SU H,WU B,et al.Efficient decision based blackbox adversarial attacks on face recognition[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2019:7714-7723. [61] CHEN Z,LIN P,JIANG Z L,et al.An illumination modulation-based adversarial attack against automated face recognition system[C]//Proceedings of 16th International Conference on Information Security and Cryptology,2020:53-69. [62] LYKO E,KEDZIORA M.Adversarial attacks on face detection algorithms using anti?facial recognition T-shirts[C]//Proceedings of IEEE International Conference on Computer Communication and the Internet,2021:266-277. [63] FERNANDES S L,JHA S K.Adversarial attack on deepfake detection using RL based texture patches[C]//Proceedings of European Conference on Computer Vision,2020:220-235. [64] ZHU Y,JIANG Y.Imperceptible adversarial attacks against traffic scene recognition[J].Soft Computing,2021,25:13069-13077. [65] ZHAO C,LI H.Condition-invariant physical adversarial attacks via pixel-wise adversarial learning[C]//Proceedings of the 28th International Conference on Neural Information Processing,2021:369-380. [66] WANG J,LIU A,YIN Z,et al.Dual attention suppression attack:generate adversarial camouflage in physical world[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2021:8565-8574. [67] EYKHOLT K,EVTIMOV I,FERNADES E,et al.Physical adversarial examples for object detectors[J].arXiv:1807.07769,2018. [68] WANG H,WANG G,LI Y,et al.Transferable,Controllable,and inconspicuous adversarial attacks on person re-identification with deep mis-ranking[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2020:342-351. [69] WANG Z,ZHENG S,SONG M,et al.AdvPattern:physical-world attacks on deep person re-identification via adversarially transformable patterns[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision(ICCV),2019:8341-8350. [70] TU J,REN M,MANINASAGAM S,et al.Physically realizable adversarial examples for LiDAR object detection[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2020:13716-13725. [71] WIYATNO R R,XU A.Physical adversarial textures that fool visual object tracking[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision(ICCV),2019:4822-4831. |
[1] | ZHENG Yutong, SUN Haoying, SONG Wei. Hybrid Samples Image Dehazing via Latent Space Translation [J]. Computer Engineering and Applications, 2023, 59(9): 225-236. |
[2] | YUN Fei, YIN Yanjun, ZHANG Wenxuan, ZHI Min. Adversarial Semi-Supervised Semantic Segmentation with Attention Mechanism [J]. Computer Engineering and Applications, 2023, 59(8): 254-262. |
[3] | WANG Xiaoming, MAO Yushi, XU Bin, WANG Zilei. Content Structure Preserved Image Style Transfer Method [J]. Computer Engineering and Applications, 2023, 59(6): 146-154. |
[4] | CHEN Jingxia, TANG Zhezhe, LIN Wentao, HU Kailei, XIE Jia. Self-Attention GAN for EEG Data Augmentation and Emotion Recognition [J]. Computer Engineering and Applications, 2023, 59(5): 160-168. |
[5] | LIANG Hong, CHEN Qiushi, SHAO Mingwen. Controllable Face Image Synthesis Algorithm Based on Attribute Decomposition and Fusion [J]. Computer Engineering and Applications, 2023, 59(4): 208-215. |
[6] | LIANG Xiao, WANG Niting, WANG Jingwen, OUYANG Jiao. Global Illumination Rendering Based on Generative Adversarial Model and Light Decomposition [J]. Computer Engineering and Applications, 2023, 59(4): 243-251. |
[7] | ZHANG Haiyan, ZHANG Fukai, YUAN Guan, LI Yingying. Research on Person Re-Identification Algorithm Based on Multi-Pose Image Generation [J]. Computer Engineering and Applications, 2023, 59(2): 143-152. |
[8] | WANG Yekui, CAO Tieyong, ZHENG Yunfei, FANG Zheng, WANG Yang , LIU Yajiu, FU Bingyang, CHEN Lei. Adversarial Attacks for Object Detection Based on Region of Interest of Feature Maps [J]. Computer Engineering and Applications, 2023, 59(2): 261-270. |
[9] | CAO Nan, DIAO Yunfeng, HUANG Yinqin, DU Run, LI Huaixian, CHENG Tianjian. Angle Space Adversarial Attack on Skeletal Action Recognition [J]. Computer Engineering and Applications, 2023, 59(14): 260-267. |
[10] | BAO Xianfu, QIANG Zanxia, YANG Guan. Snow and Haze Elimination Model Based on Function Decoupling and Edge Feature Fusion [J]. Computer Engineering and Applications, 2023, 59(13): 211-219. |
[11] | CHEN Jize, JIANG Xiaoyan, GAO Yongbin. Text-to-Image Method Based on Attention Model with Increased Gate Mechanism [J]. Computer Engineering and Applications, 2023, 59(12): 208-216. |
[12] | WANG Bowei, DENG Jun, LYU Bin. Hotspot Forecast of Taxi Demand Based on WCGAN [J]. Computer Engineering and Applications, 2023, 59(12): 293-300. |
[13] | GAO Wenchao, REN Shengbo, TIAN Chi, ZHAO Shanshan. Research on Method of Animated Avatar Generation Based on Multi-Level Generative Adversarial Networks [J]. Computer Engineering and Applications, 2022, 58(9): 230-237. |
[14] | LU Peng, CHEN Jinyu, ZOU Guoliang, WAN Ying, ZHENG Zongsheng, WANG Zhenhua. Personalized Handwritten Chinese Character Generation Method for Unsupervised Image Translation [J]. Computer Engineering and Applications, 2022, 58(8): 221-229. |
[15] | SHEN Xulin, LI Chaobo, LI Hongjun. Overview on Video Abnormal Behavior Detection of GAN via Human Density [J]. Computer Engineering and Applications, 2022, 58(7): 21-30. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||