Survey of Two-Dimensional Image Virtual Try-On Technology
TAN Zelin, BAI Jing
1.School of Chinese Ethnic Minority Languages and Literatures, Minzu University of China, Beijing 100081, China
2.School of Computer Science and Engineering, North Minzu University, Yinchuan 750021, China
3.The Key Laboratory of Images & Graphics Intelligent Processing of State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China
[1] 刘洋,李琪,殷猛.网络购物节氛围对消费者冲动购物行为的刺激作用[J].商业研究,2018(7):18-23.
LIU Y,LI Q,YIN M.The influence of internet shopping festival atmosphere on consumer impulse buying[J].Commercial Research,2018(7):18-23.
[2] 雷启然,尚笑梅.虚拟试衣技术的发展与应用[J].现代丝绸科学与技术,2018,33(6):37-40.
LEI Q R,SHANG X M.Application of virtual fitting technology in apparel industry[J].Modern Silk Science & Technology,2018,33(6):37-40.
[3] 尹喆,尚笑梅.三维虚拟试衣技术在服装行业的发展及应用综述[J].现代丝绸科学与技术,2019,34(1):38-40.
YIN Z,SHANG X M.The development and application of 3D virtual dressing technology in garment industry[J].Modern Silk Science & Technology,2019,34(1):38-40.
[4] MENG Y,MOK P Y,JIN X.Interactive virtual try-on clothing design systems[J].Computer-Aided Design,2010,42(4):310-321.
[5] WU N,DENG Z,HUANG Y,et al.A fast garment fitting algorithm using skeleton?based error metric[J].Computer Animation and Virtual Worlds,2018,29(3/4):1811.
[6] WU N,CHAO Q,CHEN Y,et al.AgentDress:realtime clothing synthesis for virtual agents using plausible deformations[J].IEEE Transactions on Visualization and Computer Graphics,2021,27(11):4107-4118.
[7] PAN X,MAI J,JIANG X,et al.Predicting loose-fitting garment deformations using bone-driven motion networks[C]//Proceedings of ACM SIGGRAPH 2022 Conference,2022:1-10.
[8] 赵娟,魏雪霞,徐增波.基于深度学习的2D虚拟试衣技术研究进展[J].丝绸,2021,58(9):48-52.
ZHAO J,WEI X X,XU Z B.Research progress of 2D virtual fitting technology based on deep learning[J].Journal of Silk,2021,58(9):48-52.
[9] GU X L,GAO F,TAN M,et al.Fashion analysis and understanding with artificial intelligence[J].Information Processing and Management,2020,57(5).
[10] 王鹏,方志军,赵晓丽,等.基于深度学习的人体图像分割算法[J].武汉大学学报(理学版),2017,63(5):466-470.
WANG P,FANG Z J,ZHAO X L,et al.Human segmentation based on deep learning[J].Journal of Wuhan University(Natural Science Edition),2017,63(5):466-470.
[11] GONG K,LIANG X,ZHANG D,et al.Look into person:self-supervised structure-sensitive learning and a new benchmark for human parsing[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:932-940.
[12] RUAN T,LIU T,HUANG Z,et al.Devil in the details:towards accurate single and multiple human parsing[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2019:4814-4821.
[13] CAO Z,SIMON T,WEI S E,et al.Realtime multi-person 2d pose estimation using part affinity fields[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:7291-7299.
[14] HE K,GKIOXARI G,DOLLáR P,et al.Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:2961-2969.
[15] 罗述谦,阎华.基于薄板样条的MRI图像与脑图谱的配准方法[J].中国生物医学工程学报,2004(6):479-485.
LUO S Q,YAN H.Registration between MR image and brain atlas based on thin palte splines[J].Chinese Journal of Biomedical Engineering,2004(6):479-485.
[16] HAN X T,WU Z X,WU Z,et al.Viton:an image-based virtual try-on network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:7543-7552.
[17] RONNEBERGER O,FISCHER P,BROX T.U-net:convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2015:234-241.
[18] JETCHEV N,BERGMANN U.The conditional analogy gan:swapping fashion articles on people images[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops,2017:2287-2292.
[19] WANG B,ZHENG H,LIANG X,et al.Toward characteristic-preserving image-based virtual try-on network[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:589-604.
[20] LEE H J,LEE R,KANG M,et al.LA-VITON:a network for looking-attractive virtual try-on[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops,2019.
[21] FINCATO M,LANDI F,CORNIA M,et al.VITON-GT:an image-based virtual try-on model with geometric transformations[C]//2020 25th International Conference on Pattern Recognition(ICPR),2021:7669-7676.
[22] HE S,SONG Y Z,XIANG T.Style-based global appearance flow for virtual try-on[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2022:3470-3479.
[23] KARRAS T,LAINE S,AILA T.A style-based generator architecture for generative adversarial networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:4401-4410.
[24] SONG D,LI T,MAO Z,et al.SP-VITON:shape-preserving image-based virtual try-on network[J].Multimedia Tools and Applications,2020,79(45):33757-33769.
[25] YU R,WANG X,XIE X.Vtnfp:an image-based virtual try-on network with body and clothing feature preservation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:10511-10520.
[26] HAN X,HU X,HUANG W,et al.Clothflow:a flow-based model for clothed person generation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:10471-10480.
[27] PHAM D L,NGYUEN N T,CHUNG S T.Keypoints-based 2D virtual try-on network system[J].Journal of Korea Multimedia Society,2020,23(2):186-203.
[28] MINAR M R,TUAN T T,AHN H,et al.CP-VTON+:clothing shape and texture preserving image-based virtual try-on[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020.
[29] YANG H,ZHANG R,GUO X,et al.Towards photo-realistic virtual try-on by adaptively generating-preserving image content[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:7850-7859.
[30] JANDIAL S,CHOPRA A,AYUSH K,et al.Sievenet:a unified framework for robust image-based virtual try-on[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,2020:2182-2190.
[31] RAFFIEE A H,SOLLAMI M.Garmentgan:photo-realistic adversarial fashion transfer[C]//2020 25th International Conference on Pattern Recognition(ICPR),2021:3923-3930.
[32] TAN Z L,BAI J,ZHANG S M,et al.NL-VTON:a non-local virtual try-on network with feature preserving of body and clothes[J].Scientific Reports,2021,11(1):1-13.
[33] CHOI S,PARK S,LEE M,et al.Viton-HD:high-resolution virtual try-on via misalignment-aware normalization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:14131-14140.
[34] HONDA S.Viton-gan:virtual try-on image generator trained with adversarial loss[J].arXiv:1911.07926,2019.
[35] WANG J,ZHANG W,LIU W,et al.Down to the last detail:virtual try-on with detail carving[J].arXiv:1912.06324,2019.
[36] ISSENHUTH T,MARY J,CALAUZèNES C.End-to-end learning of geometric deformations of feature maps for virtual try-on[J].arXiv:1906.01347,2019.
[37] ISSENHUTH T,MARY J,CALAUZèNES C.Do not mask what you do not need to mask:a parser-free virtual try-on[C]//European Conference on Computer Vision.Cham:Springer,2020:619-635.
[38] GE Y,SONG Y,ZHANG R,et al.Parser-free virtual try-on via distilling appearance flows[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:8485-8493.
[39] MORELLI D,FINCATO M,CORNIA M,et al.Dress code:high-resolution multi-category virtual try-on[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2022:2231-2235.
[40] PANDEY N,SAVAKIS A.Poly-GAN:multi-conditioned GAN for fashion synthesis[J].Neurocomputing,2020,414:356-364.
[41] GE C,SONG Y,GE Y,et al.Disentangled cycle consistency for highly-realistic virtual try-on[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:16928-16937.
[42] REN B,TANG H,MENG F,et al.Cloth interactive transformer for virtual try-on[J].arXiv:2104.05519,2021.
[43] GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial networks[J].Communications of the ACM,2020,63(11):139-144.
[44] WANG Z,BOVIK A C,SHEIKH H R,et al.Image quality assessment:from error visibility to structural similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612.
[45] ZHANG R,ISOLA P,EFROS A A,et al.The unreasonable effectiveness of deep features as a perceptual metric[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:586-595.
[46] SALIMANS T,GOODFELLOW I,ZAREMBA W,et al.Improved techniques for training GANs[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems,2016.
[47] HEUSEL M,RAMSAUER H,UNTERTHINER T,et al.Gans trained by a two time-scale update rule converge to a local nash equilibrium[J].arXiv:1706.08500v6,2017.