Computer Engineering and Applications ›› 2022, Vol. 58 ›› Issue (19): 14-36.DOI: 10.3778/j.issn.1002-8331.2205-0119
• Research Hotspots and Reviews • Previous Articles Next Articles
WANG Wei, LI Yujie, GUO Fulin, LIU Yan, HE Junlin
Online:
2022-10-01
Published:
2022-10-01
王威,李玉洁,郭富林,刘岩,何俊霖
WANG Wei, LI Yujie, GUO Fulin, LIU Yan, HE Junlin. Survey About Generative Adversarial Network Based Text-to-Image Synthesis[J]. Computer Engineering and Applications, 2022, 58(19): 14-36.
王威, 李玉洁, 郭富林, 刘岩, 何俊霖. 生成对抗网络及其文本图像合成综述[J]. 计算机工程与应用, 2022, 58(19): 14-36.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2205-0119
[1] 胡名起.基于生成对抗网络的文本生成图像研究[D].南京:东南大学,2020. HU M Q.Research on text-to-image generation based on generative adversarial network[D].Nanjing:Southeast University,2020. [2] GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets[C]//Advances in Neural Information Processing Systems,2014. [3] 王坤峰,苟超,段艳杰,等.生成式对抗网络GAN的研究进展与展望[J].自动化学报,2017,43(3):321-332. WANG K F,GOU C,DUAN Y J,et al.Generative adversarial networks:The state of the art and beyond[J].Acta Automatica Sinica,2017,43(3):321-332. [4] AGNESE J,HERRERA J,TAO H,et al.A survey and taxonomy of adversarial neural networks for text-to-image synthesis[J].Wiley Interdisciplinary Reviews:Data Mining and Knowledge Discovery,2020,10(4):1345. [5] 李西明,吴嘉润,吴少乾.敌手能力有限时基于生成对抗网络的保密增强[J].计算机科学与探索,2021,15(7):1220-1226. LI X M,WU J R,WU S Q.GANs based privacy amplification against bounded adversaries[J].Journal of Frontiers of Computer Science and Technology,2021,15(7):1220-1226. [6] 魏富强,古兰拜尔·吐尔洪,买日旦·吾守尔.生成对抗网络及其应用研究综述[J].计算机工程与应用,2021,57(19):18-31. WEI F Q,TUERHONG G,WUSHOUER M.Review of research on generative adversarial networks and its application[J].Computer Engineering and Applications,2021,57(19):18-31. [7] 米爱中,张伟,乔应旭,等.人脸妆容迁移研究综述[J].计算机工程与应用,2022,58(2):15-26. MI A Z,ZHANG W,QIAO Y X,et al.Review of research on facial makeup transfer[J].Computer Engineering and Applications,2022,58(2):15-26. [8] FRID-ADAR M,DIAMANT I,KLANG E,et al.GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification[J].Neurocomputing,2018,321:321-331. [9] 孙晓,丁小龙.基于生成对抗网络的人脸表情数据增强方法[J].计算机工程与应用,2020,56(4):115-121. SUN X,DING X L.Data augmentation method based on generative adversarial networks for facial expression recognition sets[J].Computer Engineering and Applications,2020,56(4):115-121. [10] JING Y,YANG Y,FENG Z,et al.Neural style transfer:A review[J].IEEE Transactions on Visualization and Computer Graphics,2019,26(11):3365-3385. [11] ANDREINI P,BONECHI S,BIANCHINI M,et al.Image generation by GAN and style transfer for agar plate image segmentation[J].Computer Methods and Programs in Biomedicine,2020,184:105268. [12] LEDIG C,THEIS L,HUSZáR F,et al.Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:4681-4690. [13] BULAT A,YANG J,TZIMIROPOULOS G.To learn image super-resolution,use a GAN to learn how to do image degradation first[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:185-200. [14] BODNAR C.Text to image synthesis using generative adversarial networks[J].arXiv:1805.00676,2018. [15] 苏赋,吕沁,罗仁泽.基于深度学习的图像分类研究综述[J].电信科学,2019,35(11):58-74. SU F,LYU Q,LUO R Z.A review of image classification based on deep learning[J].Telecommunications Science,2019,35(11):58-74. [16] MINAEE S,BOYKOV Y Y,PORIKLI F,et al.Image segmentation using deep learning:A survey[J].arXiv:2001.05566,2020. [17] WOLF T,DEBUT L,SANH V,et al.Hugging face’s transformers:State-of-the-art natural language processing[J].arXiv:1910.03771,2019. [18] RAMESH A,PAVLOV M,GOH G,et al.Zero-shot text-to-image generation[C]//Proceedings of the International Conference on Machine Learning,2021:8821-8831. [19] KINGMA D P,WELLING M.Auto-encoding variational bayes[J].arXiv:1312.6114,2013. [20] REZENDE D J,MOHAMED S,WIERSTRA D.Stochastic backpropagation and approximate inference in deep generative models[C]//Proceedings of the International Conference on Machine Learning,2014:1278-1286. [21] RADFORD A,METZ L,CHINTALA S.Unsupervised representation learning with deep convolutional generative adversarial networks[J].arXiv:1511.06434,2015.? [22] REED S,AKATA Z,YAN X,et al.Generative adversarial text to image synthesis[C]//Proceedings of the International Conference on Machine Learning,2016:1060-1069. [23] DASH A,GAMBOA J C B,AHMED S,et al.Tac-GAN-text conditioned auxiliary classifier generative adversarial network[J].arXiv:1703.06412,2017. [24] ZHANG H,XU T,LI H,et al.StackGAN:Text to photo-realistic image synthesis with stacked generative adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:5907-5915. [25] ZHANG H,XU T,LI H,et al.StackGAN++:Realistic image synthesis with stacked generative adversarial networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,41(8):1947-1962. [26] XU T,ZHANG P,HUANG Q,et al.AttnGAN:Fine-grained text to image generation with attentional generative adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:1316-1324. [27] ZHANG Z,XIE Y,YANG L.Photographic text-to-image synthesis with a hierarchically-nested adversarial network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:6199-6208. [28] ZHANG H,KOH J Y,BALDRIDGE J,et al.Cross-modal contrastive learning for text-to-image generation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:833-842. [29] WAH C,BRANSON S,WELINDER P,et al.The Caltech-UCSD birds-200-2011 dataset[D].California Institute of Technology,2011:1-8. [30] NILSBACK M E,ZISSERMAN A.Automated flower classification over a large number of classes[C]//Proceedings of the 6th Indian Conference on Computer Vision,Graphics & Image Processing,2008:722-729. [31] LIN T Y,MAIRE M,BELONGIE S,et al.Microsoft COCO:Common objects in context[C]//Proceedings of the European Conference on Computer Vision,2014:740-755. [32] SALIMANS T,GOODFELLOW I,ZAREMBA W,et al.Improved techniques for training GANs[C]//Advances in Neural Information Processing Systems,2016. [33] HEUSEL M,RAMSAUER H,UNTERTHINER T,et al.GANs trained by a two time-scale update rule converge to a local NASH equilibrium[C]//Advances in Neural Information Processing Systems,2017. [34] FROLOV S,HINZ T,RAUE F,et al.Adversarial text-to-image synthesis:A review[J].Neural Networks,2021,144:187-209. [35] PAN Z,YU W,YI X,et al.Recent progress on generative adversarial networks(GANs):A survey[J].IEEE Access,2019,7:36322-36333. [36] WANG Z,SHE Q,WARD T E.Generative adversarial networks in computer vision:A survey and taxonomy[J].ACM Computing Surveys(CSUR),2021,54(2):1-38. [37] CRESWELL A,WHITE T,DUMOULIN V,et al.Generative adversarial networks:An overview[J].IEEE Signal Processing Magazine,2018,35(1):53-65. [38] WANG K,GOU C,DUAN Y,et al.Generative adversarial networks:Introduction and outlook[J].IEEE/CAA Journal of Automatica Sinica,2017,4(4):588-598. [39] MIRZA M,OSINDERO S.Conditional generative adversarial nets[J].arXiv:1411.1784,2014. [40] TAN H,LIU X,LI X,et al.Semantics-enhanced adversarial nets for text-to-image synthesis[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:10501-10510. [41] LI B,QI X,LUKASIEWICZ T,et al.Controllable text-to-image generation[C]//Advances in Neural Information Processing Systems,2019. [42] ZHU M,PAN P,CHEN W,et al.Dm-GAN:Dynamic memory generative adversarial networks for text-to-image synthesis[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:5802-5810. [43] QIAO T,ZHANG J,XU D,et al.MirrorGAN:Learning text-to-image generation by redescription[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:1505-1514. [44] LI W,ZHANG P,ZHANG L,et al.Object-driven text-to-image synthesis via adversarial training[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:12174-12182. [45] SYLVAIN T,ZHANG P,BENGIO Y,et al.Object-centric image generation from layouts[J].arXiv:2003.07449,2020. [46] HINZ T,HEINRICH S,WERMTER S.Semantic object accuracy for generative text-to-image synthesis[J].arXiv:1910.13321,2019. [47] LI B,QI X,LUKASIEWICZ T,et al.ManiGAN:Text-guided image manipulation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:7880-7889. [48] LI B,QI X,TORR P,et al.Lightweight generative adversarial networks for text-guided image manipulation[C]//Advances in Neural Information Processing Systems,2020:22020-22031. [49] KARRAS T,LAINE S,AILA T.A style-based generator architecture for generative adversarial networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:4401-4410. [50] XIA W,YANG Y,XUE J H,et al.TediGAN:Text-guided diverse face image generation and manipulation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:2256-2265. [51] ZHOU Y,ZHANG R,GU J,et al.TiGAN:Text-based interactive image generation and manipulation[C]//Association for the Advancement of Artificial Intelligence,2022. [52] YIN G,LIU B,SHENG L,et al.Semantics disentangling for text-to-image generation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:2327-2336. [53] YE H,YANG X,TAKAC M,et al.Improving text-to-image synthesis using contrastive learning[J].arXiv:2107. 02423,2021. [54] ZHU B,NGO C W.CookGAN:Causality based text-to-image synthesis[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:5519-5527. [55] 卢庆林,叶伟.面向SAR图像处理的生成式对抗网络应用综述[J].电讯技术,2020,60(1):121-128. LU Q L,YE W.A survey of generative adversarial network applications for SAR image processing[J].Telecommunications Technology,2020,60(1):121-128. [56] GALLO I,NAWAZ S,CALEFATI A.Semantic text encoding for text classification using convolutional neural networks[C]//Proceedings of the 14th IAPR International Conference on Document Analysis and Recognition(ICDAR),2017:16-21. [57] DAI B,FIDLER S,URTASUN R,et al.Towards diverse and natural image descriptions via a conditional GAN[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:2970-2979. [58] BOJANOWSKI P,JOULIN A,LOPEZ-PAZ D,et al.Optimizing the latent space of generative networks[J].arXiv:1707.05776,2017. [59] WANG W,WANG R,HUANG Z,et al.Discriminant analysis on Riemannian manifold of Gaussian distributions for face recognition with image sets[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015:2048-2057. [60] AMIN A A.Kullback-Leibler divergence to evaluate posterior sensitivity to different priors for autoregressive time series models[J].Communications in Statistics-Simulation and Computation,2019,48(5):1277-1291. [61] MUKHERJEE S,ASNANI H,LIN E,et al.ClusterGAN:Latent space clustering in generative adversarial networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2019:4610-4617. [62] REED S,AKATA Z,LEE H,et al.Learning deep representations of fine-grained visual descriptions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:49-58. [63] AKATA Z,REED S,WALTER D,et al.Evaluation of output embeddings for fine-grained image classification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015:2927-2936. [64] SCHUSTER M,PALIWAL K K.Bidirectional recurrent neural networks[J].IEEE Transactions on Signal Processing,1997,45(11):2673-2681. [65] ODENA A,OLAH C,SHLENS J.Conditional image synthesis with auxiliary classifier GANs[C]//Proceedings of the International Conference on Machine Learning,2017:2642-2651. [66] ZHU J Y,PARK T,ISOLA P,et al.Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:2223-2232. [67] GAO L,CHEN D,SONG J,et al.Perceptual pyramid adversarial networks for text-to-image synthesis[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2019:8312-8319. [68] DENG Y,YANG J,CHEN D,et al.Disentangled and controllable face image generation via 3D imitative-contrastive learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:5154-5163. [69] LI Y,MA T,BAI Y,et al.PasteGAN:A semi-parametric method to generate image from scene graph[C]//Advances in Neural Information Processing Systems,2019. [70] VO D M,SUGIMOTO A.Visual-relation conscious image generation from structured-text[C]//Proceedings of the European Conference on Computer Vision,2020:290-306. [71] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Advances in Neural Information Processing Systems,2017. [72] BAHDANAU D,CHO K,BENGIO Y.Neural machine translation by jointly learning to align and translate[J].arXiv:1409.0473,2014. [73] LUONG M T,PHAM H,MANNING C D.Effective approaches to attention-based neural machine translation[J].arXiv:1508.04025,2015. [74] 马力,邹亚莉.嵌入自注意力机制的美学特征图像生成方法[J].计算机科学与探索,2021,15(9):1728-1739. MA L,ZOU Y L.Aesthetic feature image generation method embedded with self-attention mechanism[J].Journal of Frontiers of Computer Science and Technology,2021,15(9):1728-1739. [75] SUKHBAATAR S,WESTON J,FERGUS R.End-to-end memory networks[C]//Advances in Neural Information Processing Systems,2015. [76] GULCEHRE C,CHANDAR S,CHO K,et al.Dynamic neural Turing machine with continuous and discrete addressing schemes[J].Neural Computation,2018,30(4):857-884. [77] MILLER A,FISCH A,DODGE J,et al.Key-value memory networks for directly reading documents[J].arXiv:1606.03126,2016. [78] KARPATHY A,FEI-FEI L.Deep visual-semantic alignments for generating image descriptions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015:3128-3137. [79] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778. [80] GREFF K,SRIVASTAVA R K,KOUTNíK J,et al.LSTM:A search space odyssey[J].IEEE Transactions on Neural Networks and Learning Systems,2016,28(10):2222-2232. [81] ZHANG Z,SABUNCU M.Generalized cross entropy loss for training deep neural networks with noisy labels[C]//Advances in Neural Information Processing Systems,2018. [82] LAO Q,HAVAEI M,PESARANGHADER A,et al.Dual adversarial inference for text-to-image synthesis[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:7567-7576. [83] NGUYEN A,CLUNE J,BENGIO Y,et al.Plug & play generative networks:Conditional iterative generation of images in latent space[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:4467-4477. [84] 王宇昊,何彧,王铸.基于深度学习的文本到图像生成方法综述[J].计算机工程与应用,2022,58(10):50-67. WANG Y H,HE Y,WANG Z.Overview of text-to-image generation methods based on deep learning[J].Computer Engineering and Applications,2022,58(10):50-67. [85] JAISWAL A,BABU A R,ZADEH M Z,et al.A survey on contrastive self-supervised learning[J].Technologies,2020,9(1):2. [86] KHOSLA P,TETERWAK P,WANG C,et al.Supervised contrastive learning[C]//Advances in Neural Information Processing Systems,2020:18661-18673. [87] KANG M,PARK J.ContraGAN:Contrastive learning for conditional image generation[C]//Advances in Neural Information Processing Systems,2020:21357-21369. [88] VAN DEN OORD A,LI Y,VINYALS O.Representation learning with contrastive predictive coding[J].arXiv:1807. 03748,2018. [89] LIU X,YIN G,SHAO J,et al.Learning to predict layout-to-image conditional convolutions for semantic image synthesis[C]//Advances in Neural Information Processing Systems,2019. [90] HINZ T,HEINRICH S,WERMTER S.Generating multiple objects at spatially distinct locations[J].arXiv:1901. 00686,2019. [91] TAO M,TANG H,WU F,et al.DF-GAN:A simple and effective baseline for text-to-image synthesis[J].arXiv:2008.05865,2020. [92] KOCASARI U,DIRIK A,TIFTIKCI M,et al.StyleMC:Multi-channel based fast text-guided image generation and manipulation[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,2022:895-904. [93] ZHOU R,JIANG C,XU Q.A survey on generative adversarial network-based text-to-image synthesis[J].Neurocomputing,2021,451:316-336. [94] KARRAS T,LAINE S,AITTALA M,et al.Analyzing and improving the image quality of styleGAN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:8110-8119. [95] PARK T,LIU M Y,WANG T C,et al.Semantic image synthesis with spatially-adaptive normalization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:2337-2346. [96] DUMOULIN V,SHLENS J,KUDLUR M.A learned representation for artistic style[J].arXiv:1610.07629,2016. [97] XIA X,XU C,NAN B.Inception-v3 for flower classification[C]//Proceedings of the 2nd International Conference on Image,Vision and Computing(ICIVC),2017:783-787. [98] SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:2818-2826. [99] JOHNSON J,ALAHI A,FEI-FEI L.Perceptual losses for real-time style transfer and super-resolution[C]//Proceedings of the European Conference on Computer Vision,2016:694-711. [100] KARRAS T,AILA T,LAINE S,et al.Progressive growing of GANs for improved quality,stability,and variation[J].arXiv:1710.10196,2017. [101] XIA W,ZHANG Y,YANG Y,et al.GAN inversion:A survey[J].arXiv:2101.05278,2021. [102] ZHU J,SHEN Y,ZHAO D,et al.In-domain GAN inversion for real image editing[C]//Proceedings of the European Conference on Computer Vision,2020:592-608. [103] PATASHNIK O,WU Z,SHECHTMAN E,et al.Styleclip:Text-driven manipulation of styleGAN imagery[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2021:2085-2094. [104] KRIZHEVSKY A,HINTON G.Learning multiple layers of features from tiny images[J].Handbook of Systemic Autoimmune Diseases,2009,1(4):1-60. [105] XIAO H,RASUL K,VOLLGRAF R.Fashion-MNIST:A novel image dataset for benchmarking machine learning algorithms[J].arXiv:1708.07747,2017. [106] ZHANG R,ISOLA P,EFROS A A,et al.The unreasonable effectiveness of deep features as a perceptual metric[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:586-595. [107] 刘文婷,卢新明.基于计算机视觉的Transformer研究进展[J].计算机工程与应用,2022,58(6):1-16. LIU W T,LU X M.Research progress of transformer based on computer vision[J].Computer Engineering and Applications,2022,58(6):1-16. |
[1] | LUO Xianglong, GUO Huang, LIAO Cong, HAN Jing, WANG Lixin. Spatiotemporal Short-Term Traffic Flow Prediction Based on Broad Learning System [J]. Computer Engineering and Applications, 2022, 58(9): 181-186. |
[2] | Alim Samat, Sirajahmat Ruzmamat, Maihefureti, Aishan Wumaier, Wushuer Silamu, Turgun Ebrayim. Research on Sentence Length Sensitivity in Neural Network Machine Translation [J]. Computer Engineering and Applications, 2022, 58(9): 195-200. |
[3] | GAO Wenchao, REN Shengbo, TIAN Chi, ZHAO Shanshan. Research on Method of Animated Avatar Generation Based on Multi-Level Generative Adversarial Networks [J]. Computer Engineering and Applications, 2022, 58(9): 230-237. |
[4] | CHEN Yixiao, Alifu·Kuerban, LIN Wenlong, YUAN Xu. CA-YOLOv5 for Crowded Pedestrian Detection [J]. Computer Engineering and Applications, 2022, 58(9): 238-245. |
[5] | FANG Yiqiu, LU Zhuang, GE Junwei. Forecasting Stock Prices with Combined RMSE Loss LSTM-CNN Model [J]. Computer Engineering and Applications, 2022, 58(9): 294-302. |
[6] | GAO Guangshang. Survey on Attention Mechanisms in Deep Learning Recommendation Models [J]. Computer Engineering and Applications, 2022, 58(9): 9-18. |
[7] | JI Meng, HE Qinglong. AdaSVRG: Accelerating SVRG by Adaptive Learning Rate [J]. Computer Engineering and Applications, 2022, 58(9): 83-90. |
[8] | LU Peng, CHEN Jinyu, ZOU Guoliang, WAN Ying, ZHENG Zongsheng, WANG Zhenhua. Personalized Handwritten Chinese Character Generation Method for Unsupervised Image Translation [J]. Computer Engineering and Applications, 2022, 58(8): 221-229. |
[9] | SHI Jie, YUAN Chenxiang, DING Fei, KONG Weixiang. Survey of Building Target Detection in SAR Images [J]. Computer Engineering and Applications, 2022, 58(8): 58-66. |
[10] | XIONG Fengguang, ZHANG Xin, HAN Xie, KUANG Liqun, LIU Huanle, JIA Jionghao. Research on Improved Semantic Segmentation of Remote Sensing [J]. Computer Engineering and Applications, 2022, 58(8): 185-190. |
[11] | SHEN Xulin, LI Chaobo, LI Hongjun. Overview on Video Abnormal Behavior Detection of GAN via Human Density [J]. Computer Engineering and Applications, 2022, 58(7): 21-30. |
[12] | YANG Jinfan, WANG Xiaoqiang, LIN Hao, LI Leixiao, YANG Yanyan, LI Kecen, GAO Jing. Review of One-Stage Vehicle Detection Algorithms Based on Deep Learning [J]. Computer Engineering and Applications, 2022, 58(7): 55-67. |
[13] | WANG Bin, LI Xin. Research on Multi-Source Domain Adaptive Algorithm Integrating Dynamic Residuals [J]. Computer Engineering and Applications, 2022, 58(7): 162-166. |
[14] | TAN Shuqiu, TANG Guofang, TU Yuanya, ZHANG Jianxun, GE Panjie. Classroom Monitoring Students Abnormal Behavior Detection System [J]. Computer Engineering and Applications, 2022, 58(7): 176-184. |
[15] | ZHANG Meiyu, LIU Yuehui, HOU Xianghui, QIN Xujia. Automatic Coloring Method for Gray Image Based on Convolutional Network [J]. Computer Engineering and Applications, 2022, 58(7): 229-236. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||