Computer Engineering and Applications ›› 2022, Vol. 58 ›› Issue (20): 16-27.DOI: 10.3778/j.issn.1002-8331.2204-0382
• Research Hotspots and Reviews • Previous Articles Next Articles
WANG Daolei, XIAO Jiawei, LI Jiankang, ZHU Rui
Online:
2022-10-15
Published:
2022-10-15
王道累,肖佳威,李建康,朱瑞
WANG Daolei, XIAO Jiawei, LI Jiankang, ZHU Rui. Review of Stereo Image Disparity Estimation Methods Based on Depth Learning[J]. Computer Engineering and Applications, 2022, 58(20): 16-27.
王道累, 肖佳威, 李建康, 朱瑞. 基于深度学习的立体影像视差估计方法综述[J]. 计算机工程与应用, 2022, 58(20): 16-27.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2204-0382
[1] LAGA H,JOSPIN L V,BOUSSAID F,et al.A survey on deep learning techniques for stereo-based depth estimation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,44(4):1738-1764. [2] BARNES C.Patchmatch:a randomized correspondence algorithm for structural image editing[J].ACM Transactions on Graphics,2009,28(3):1-11. [3] SCHARSTEIN D,SZELISKI R.A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J].International Journal of Computer Vision,2002,47(1):7-42. [4] ZAARANE A,SLIMANI I,OKAISHI W A,et al.Distance measurement system for autonomous vehicles using stereo camera-ScienceDirect[J].Array,2020,5:100016. [5] ZHAO Y,HOU X,LEI J,et al.The obstacle avoidance system for mobile robot based on binocular stereo vision[C]//2010 8th World Congress on Intelligent Control and Automation,2010. [6] TAO T W,QU J Y.Optical imaging for medical diagnosis based on active stereo vision and motion tracking[J].Optics Express,2007,15(16):10421-10426. [7] GOSHIN Y V,FURSOV V A.3D scene reconstruction from stereo images with unknown extrinsic parameters[J].Computer Optics,2015,39(5):770-776. [8] ARUNAGIRI S,JORDAN V J,TELLER P J,et al.Stereo matching:performance study of two global algorithms[J].Proceedings of SPIE-The International Society for Optical Engineering,2011,8021:1-17. [9] SUN J,SHUM H Y,ZHENG N.Stereo matching using belief propagation[C]//Computer Vision-ECCV 2002,7th European Conference on Computer Vision,Copenhagen,Denmark,2003. [10] YOON K J,KWEON I S.Adaptive support-weight approach for correspondence search[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(4):650-656. [11] PANG J,SUN W,REN J S,et al.Cascade residual learning:a two-stage convolutional neural network for stereo matching[C]//IEEE International Conference on Computer Vision Workshops,2017. [12] GAO Z.Multi-scale dense attention network for stereo matching[J].Electronics,2020,9:1881. [13] TECHNICOLOR T,RELATED S,TECHNICOLOR T,et al.ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems,2012. [14] ?BONTAR J,LECUN Y.Stereo matching by training a convolutional neural network to compare image patches[J].The Journal of Machine Learning Research,2016,17(1):2287-2318. [15] SHAKED A,WOLF L.Improved stereo matching with constant highway networks and reflective confidence learning[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2017. [16] CHEN Z,XUN S,LIANG W,et al.A deep visual correspondence embedding model for stereo matching costs[C]//2015 IEEE International Conference on Computer Vision(ICCV),2015. [17] YANG T,HE Q,NING W,et al.A new stereo matching method with combination of cross-based aggregation and hierarchical belief propagation[C]//2012 IEEE International Conference on Information and Automation,2012. [18] YANG Q,WANG L,YANG R,et al.Stereo matching with color-weighted correlation,hierarchical belief propagation,and occlusion handling[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(3):492-504. [19] ZHOU Kun,MENG Xiangxi,CHENG Bo.Review of stereo matching algorithms based on deep learning[J].Computational Intelligence and Neuroscience,2020:8562323. [20] SEKI A,POLLEFEYS M.SGM-Nets:semi-global matching with neural networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2017. [21] GIDARIS S,KOMODAKIS N.Detect,replace,refine:deep structured prediction for pixel wise labeling[J].arXiv:1612.04770,2016. [22] WANG Q,ZHENG S,YAN Q,et al.IRS:a large naturalistic indoor robotics stereo dataset to train deep models for disparity and surface normal estimation[C]//International Conference on Multimedia and Expo,2021. [23] KANBARA M,FUJII H,TAKEMURA H,et al.A stereo vision-based augmented reality system with an inertial sensor[C]//IEEE & ACM International Symposium on Augmented Reality,2000. [24] CHESSA M,SOLARI F,SABATINI S P.A virtual reality simulator for active stereo vision systems[C]//VISAPP 2009-Proceedings of the Fourth International Conference on Computer Vision Theory and Applications,Lisboa,Portugal,February 5-8,2009. [25] CHANG J R,CHEN Y S.Pyramid stereo matching network[J].arXiv:1803.08669,2018. [26] CHENG X,ZHONG Y,HARANDI M,et al.Hierarchical neural architecture search for deep stereo matching[C]//34th Conference on Neural Information Processing Systems,2020. [27] YANG G,MANELA J,HAPPOLD M,et al.Hierarchical deep stereo matching on high-resolution images[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2019. [28] TANKOVICH V,HNE C,FANELLO S,et al.HITNet:hierarchical iterative tile refinement network for real-time stereo matching[C]//Computer Vision and Pattern Recognition,2021. [29] ZHANG F,PRISACARIU V,YANG R,et al.GA-Net:guided aggregation net for end-to-end stereo matching[J].arXiv:1904.06587,2019. [30] DUGGAL S,WANG S,MA W C,et al.DeepPruner:learning efficient stereo matching via differentiable patchmatch[C]//International Conference on Computer Vision,2019. [31] XU B,XU Y,YANG X,et al.Bilateral grid learning for stereo matching network[C]//2021 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2021. [32] KENDALL A,MARTIROSYAN H,DASGUPTA S,et al.End-to-end learning of geometry and context for deep stereo regression[J].arXiv:1703.04309,2017. [33] MAYER N,ILG E,HAUSSER P,et al.A large dataset to train convolutional networks for disparity,optical flow,and scene flow estimation[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2016. [34] REN Z,YAN J,NI B,et al.Unsupervised deep learning for optical flow estimation[C]//Thirty-First AAAI Conference on Artificial Intelligence,2017. [35] FLYNN J,NEULANDER I,PHILBIN J,et al.Deep stereo:learning to predict new views from the world’s imagery[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2016. [36] XIE J,GIRSHICK R,FARHADI A.Deep3D:fully automatic 2D-to-3D video conversion with deep convolutional neural networks[C]//European Conference on Computer Vision,2016. [37] GARG R,BG V K,CARNEIRO G,et al.Unsupervised CNN for single view depth estimation:geometry to the rescue[J].arXiv:1603.04992,2016. [38] GODARD C,AODHA O M,BROSTOW G J.Unsupervised monocular depth estimation with left-right consistency[C]//Computer Vision & Pattern Recognition,2017. [39] XING M,XUN S,ZHOU M,et al.On building an accurate stereo matching system on graphics hardware[C]//IEEE International Conference on Computer Vision Workshops,2012. [40] HIRSCHMüLLER H.Stereo processing by semi-global matching and mutual information[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(2):328-341. [41] RHEMANN C,HOSNI A,BLEYER M,et al.Fast cost-volume filtering for visual correspondence and beyond[C]//IEEE Conference on Computer Vision & Pattern Recognition,2011. [42] HE K,JIAN S,TANG X.Guided image filtering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(6):1397-1409. [43] ZHANG F,WAH B W.Supplementary meta-learning:towards a dynamic model for deep neural networks[C]//2017 IEEE International Conference on Computer Vision(ICCV),2017. [44] LIU C,CHEN L C,SCHROFF F,et al.Auto-DeepLab:hierarchical neural architecture search for semantic image segmentation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2019. [45] SAIKIA T,MARRAKCHI Y,ZELA A,et al.AutoDispNet:improving disparity estimation with AutoML[C]//2019 IEEE/CVF International Conference on Computer Vision(ICCV),2019. [46] CHEN W,GONG X,LIU X,et al.FasterSeg:searching for faster real-time semantic segmentation[C]//Proceedings of ICLR,2020. [47] BESSE F,ROTHER C,FITZGIBBON A,et al.PMBP:PatchMatch belief propagation for correspondence field estimation[J].International Journal of Computer Vision,2014,110:2-13. [48] KHAMIS S,FANELLO S R,RHEMANN C,et al.StereoNet:guided hierarchical refinement for real-time edge-aware depth prediction[C]//Proceedings of ECCV,2018. [49] CHEN J,PARIS S,DURAND F.Real-time edge-aware image processing with the bilateral grid[J].ACM Transactions on Graphics,2007,26(3):103. [50] GEIGER A,LENZ P,URTASUN R.Are we ready for autonomous driving? The KITTI vision benchmark suite[C]//IEEE Conference on Computer Vision & Pattern Recognition,2012. [51] MENZE M,GEIGER A.Object scene flow for autonomous vehicles[C]//IEEE Conference on Computer Vision & Pattern Recognition,2015. [52] BAO W,WANG W,XU Y,et al.InStereo2K:a large real dataset for stereo matching in indoor scenes[J].Sciece China.Information Sciences,2020,63(11):212101. [53] SCHARSTEIN D,HIRSCHMüLLER H,KITAJIMA Y,et al.High-resolution stereo datasets with subpixel-accurate ground truth[C]//German Conference on Pattern Recognition,2014. |
[1] | LUO Xianglong, GUO Huang, LIAO Cong, HAN Jing, WANG Lixin. Spatiotemporal Short-Term Traffic Flow Prediction Based on Broad Learning System [J]. Computer Engineering and Applications, 2022, 58(9): 181-186. |
[2] | Alim Samat, Sirajahmat Ruzmamat, Maihefureti, Aishan Wumaier, Wushuer Silamu, Turgun Ebrayim. Research on Sentence Length Sensitivity in Neural Network Machine Translation [J]. Computer Engineering and Applications, 2022, 58(9): 195-200. |
[3] | CHEN Yixiao, Alifu·Kuerban, LIN Wenlong, YUAN Xu. CA-YOLOv5 for Crowded Pedestrian Detection [J]. Computer Engineering and Applications, 2022, 58(9): 238-245. |
[4] | FANG Yiqiu, LU Zhuang, GE Junwei. Forecasting Stock Prices with Combined RMSE Loss LSTM-CNN Model [J]. Computer Engineering and Applications, 2022, 58(9): 294-302. |
[5] | GAO Guangshang. Survey on Attention Mechanisms in Deep Learning Recommendation Models [J]. Computer Engineering and Applications, 2022, 58(9): 9-18. |
[6] | JI Meng, HE Qinglong. AdaSVRG: Accelerating SVRG by Adaptive Learning Rate [J]. Computer Engineering and Applications, 2022, 58(9): 83-90. |
[7] | SHI Jie, YUAN Chenxiang, DING Fei, KONG Weixiang. Survey of Building Target Detection in SAR Images [J]. Computer Engineering and Applications, 2022, 58(8): 58-66. |
[8] | XIONG Fengguang, ZHANG Xin, HAN Xie, KUANG Liqun, LIU Huanle, JIA Jionghao. Research on Improved Semantic Segmentation of Remote Sensing [J]. Computer Engineering and Applications, 2022, 58(8): 185-190. |
[9] | YANG Jinfan, WANG Xiaoqiang, LIN Hao, LI Leixiao, YANG Yanyan, LI Kecen, GAO Jing. Review of One-Stage Vehicle Detection Algorithms Based on Deep Learning [J]. Computer Engineering and Applications, 2022, 58(7): 55-67. |
[10] | WANG Bin, LI Xin. Research on Multi-Source Domain Adaptive Algorithm Integrating Dynamic Residuals [J]. Computer Engineering and Applications, 2022, 58(7): 162-166. |
[11] | TAN Shuqiu, TANG Guofang, TU Yuanya, ZHANG Jianxun, GE Panjie. Classroom Monitoring Students Abnormal Behavior Detection System [J]. Computer Engineering and Applications, 2022, 58(7): 176-184. |
[12] | ZHANG Meiyu, LIU Yuehui, HOU Xianghui, QIN Xujia. Automatic Coloring Method for Gray Image Based on Convolutional Network [J]. Computer Engineering and Applications, 2022, 58(7): 229-236. |
[13] | ZHANG Zhuangzhuang, QU Licheng, LI Xiang, ZHANG Minghao, LI Zhaolu. Traffic Flow Prediction with Missing Data Based on Spatial-Temporal Convolutional Neural Networks [J]. Computer Engineering and Applications, 2022, 58(7): 259-265. |
[14] | XU Jie, ZHU Yukun, XING Chunxiao. Research on Financial Trading Algorithm Based on Deep Reinforcement Learning [J]. Computer Engineering and Applications, 2022, 58(7): 276-285. |
[15] | ZHANG Hao, ZHANG Xiaoyu, ZHANG Zhenyou, LI Wei. Summary of Intrusion Detection Models Based on Deep Learning [J]. Computer Engineering and Applications, 2022, 58(6): 17-28. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||