Computer Engineering and Applications ›› 2022, Vol. 58 ›› Issue (20): 28-42.DOI: 10.3778/j.issn.1002-8331.2202-0243
• Research Hotspots and Reviews • Previous Articles Next Articles
LIU Yanpei, ZHU Yunjing, BIN Yanru, CHEN Ningning, WANG Liping
Online:
2022-10-15
Published:
2022-10-15
刘炎培,朱运静,宾艳茹,陈宁宁,王丽萍
LIU Yanpei, ZHU Yunjing, BIN Yanru, CHEN Ningning, WANG Liping. Review of Research on Computing-Intensive Task Scheduling in Edge Environments[J]. Computer Engineering and Applications, 2022, 58(20): 28-42.
刘炎培, 朱运静, 宾艳茹, 陈宁宁, 王丽萍. 边缘环境下计算密集型任务调度研究综述[J]. 计算机工程与应用, 2022, 58(20): 28-42.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2202-0243
[1] GHOBAEI-ARANI M,SOURI A,RAHMANIAN A A.Resource management approaches in fog computing:a comprehensive review[J].Journal of Grid Computing,2020,18(1):1-42. [2] AMINI MOTLAGH A,MOVAGHAR A,RAHMANI A M.Task scheduling mechanisms in cloud computing:a systematic review[J].International Journal of Communication Systems,2020,33(6):e4302. [3] TALEB T,SAMDANIS K,MADA B,et al.On multi-access edge computing:a survey of the emerging 5G network edge cloud architecture and orchestration[J].IEEE Communications Surveys & Tutorials,2017,19(3):1657-1681. [4] YANG Y,WANG K,ZHANG G,et al.MEETS:maximal energy efficient task scheduling in homogeneous fog networks[J].IEEE Internet of Things Journal,2018,5(5):4076-4087. [5] JIANG K,NI H,SUN P,et al.An improved binary grey wolf optimizer for dependent task scheduling in edge computing[C]//Proceedings of the 2019 21st International Conference on Advanced Communication Technology(ICACT),2019:182-186. [6] GUO X,LIU L,CHANG Z,et al.Data offloading and task allocation for cloudlet-assisted ad hoc mobile clouds[J].Wireless Networks,2018,24(1):1-10. [7] HU H Y,PATEL M,SABELLA D,et al.Mobile edge computing—a key technology towards 5G[J].ETSI White Paper,2015,11(11):1-16. [8] WU Y,GUO W,REN J,et al.NO2:speeding up parallel processing of massive compute-intensive tasks[J].IEEE Transactions on Computers,2013,63(10):2487-2499. [9] KOLICI V,HERRERO A,XHAFA F.On the performance of Oracle grid engine queuing system for computing intensive applications[J].Journal of Information Processing Systems,2014,10(4):491-502. [10] DIETZE R,HOFMANN M,RüNGER G.Water-level scheduling for parallel tasks in compute-intensive application components[J].The Journal of Supercomputing,2016,72(11):4047-4068. [11] THAI M T,LIN Y D,LAI Y C,et al.Workload and capacity optimization for cloud-edge computing systems with vertical and horizontal offloading[J].IEEE Transactions on Network and Service Management,2019,17(1):227-238. [12] HAZRA A,ADHIKARI M,AMGOTH T,et al.Stackelberg game for service deployment of IoT-enabled applications in 6G-aware fog networks[J].IEEE Internet of Things Journal,2020,8(7):5185-5193. [13] MANSOURI N,JAVIDI M M.Cost-based job scheduling strategy in cloud computingenvironments[J].Distri- buted and Parallel Databases,2020,38(2):365-400. [14] BARIKA M,GARG S,ZOMAYA A,et al.Online scheduling technique to handle data velocity changes in stream workflows[J].IEEE Transactions on Parallel and Distributed Systems,2021,32(8):2115-2130. [15] RIZVI N,DHARAVATH R,EDLA D R.Cost and makespan aware workflow scheduling in IaaS clouds using hybrid spider monkey optimization[J].Simulation Modelling Practice and Theory,2021,110(3):102328. [16] NEDUNCHELIAN R,KOUSHIK K,NAGAPPAN M,et al.Dynamic task scheduling using parallel genetic algorithms for heterogeneous distributed computing[C]//Proceedings of GCA,2006:82-88. [17] LI C,ZHANG Y H,LUO Y.Neighborhood search-based job scheduling for IoT big data real-time processing in distributed edge-cloud computing environment[J].The Journal of Supercomputing,2021,77:1853-1878. [18] MOHAMMADZADEH A,MASDARI M,GHAREHCHOPOGH F S.Energy and cost-aware workflow scheduling in cloud computing data centers using a multi-objective optimization algorithm[J].Journal of Network and Systems Management,2021,29(3):1-34. [19] ZADE B,MANSOURI N,JAVIDI M M.SAEA:a security-aware and energy-aware task scheduling strategy by parallel squirrel search algorithm in cloud environment[J].Expert Systems with Applications,2021,176(1):1-30. [20] FAN Q,LI Z,CHEN X.Deep reinforcement learning based task scheduling in edge computing networks[C]//Proceedings of the 2020 IEEE/CIC International Conference on Communications in China(ICCC),2020:835-840. [21] SINGH H,BHASIN A,KAVERI P R.QRAS:efficient resource allocation for task scheduling in cloud computing[J].SN Applied Sciences,2021,3(4):1-7. [22] LUO Y,LI F W,YANG W,et al.A real-time edge scheduling and adjustment framework for highly customizable factories[J].IEEE Transactions on Industrial Informatics,2020,17(8):5625-5634. [23] WEN Z,GARG S,AUJLA G,et al.Running industrial workflow applications in a software-defined multicloud environment using green energy aware scheduling algorithm[J].IEEE Transactions on Industrial Informatics,2021,17(8):5645-5656. [24] IJAZ S,MUNIR E U,AHMAD S G,et al.Energy-makespan optimization of workflow scheduling in fog-cloud computing[J].Computing,2021,103(9):2033-2059. [25] SV A,PK B,VMAX C,et al.Hybrid electro search with genetic algorithm for task scheduling in cloud computing-ScienceDirect[J].Ain Shams Engineering Journal,2021,12(1):631-639. [26] LIU Z,ZHAO A,LIANG M.A port-based forwarding load-balancing scheduling approach for cloud datacenter networks[J].Journal of Cloud Computing,2021,10(1):1-14. [27] ZHENG G,ZHANG H,LI Y,et al.5g network-oriented hierarchical distributed cloud computing system resource optimization scheduling and allocation[J].Computer Communications,2020,164:88-99. [28] MISHRA K,PRADHAN R,MAJHI S K.Quantum-inspired binary chaotic salp swarm algorithm(QBCSSA)-based dynamic task scheduling for multiprocessor cloud computing systems[J].The Journal of Supercomputing,2021,77(9):10377-10423. [29] MALARVIZHI N,ASWINI J,SASIKALA S,et al.Multi-parameter optimization for load balancing with effective task scheduling and resource sharing[J].Journal of Ambient Intelligence and Humanized Computing,2021(9):1-9. [30] ALQAHTANI F,AMOON M,NASR A A.Reliable scheduling and load balancing for requests in cloud-fog computing[J].Peer-to-Peer Networking and Applications,2021(5):1-12. [31] TONG Z,DENG X,CHEN H,et al.DDMTS:a novel dynamic load balancing scheduling scheme under SLA constraints in cloud computing[J].Journal of Parallel and Distributed Computing,2020,149(4):138-148. [32] LI C,ZHANG Y,SUN Q,et al.Collaborative caching strategy based on optimization of latency and energy consumption in MEC[J].Knowledge-Based Systems,2021,233:1-18. [33] DEWANGAN B K,AGARWAL A,CHOUDHURY T,et al.Workload aware autonomic resource management scheme using grey wolf optimization in cloud environment[J].IET Communications,2021,15(14):1869-1882. [34] LEI X,ASSEM H,YAHIA I,et al.CogNet:a network management architecture featuring cognitive capabilities[C]//Proceedings of the European Conference on Networks & Communications,2016:325-329. [35] NEVES P,CALé R,COSTA M R,et al.The SELFNET approach for autonomic management in an NFV/SDN networking paradigm[J].International Journal of Distributed Sensor Networks,2016,12(2):1-17. [36] GU X,JIN L,ZHAO N,et al.Energy-efficient computation offloading and transmit power allocation scheme for mobile edge computing[J].Mobile Information Systems,2019:1-9. [37] WANG J,ZHAO L,LIU J,et al.Smart resource allocation for mobile edge computing:a deep reinforcement learning approach[J].IEEE Transactions on Emerging Topics in Computing,2019,9(3):1529-1541. [38] LIU Q,ZHAI J W,ZHANG Z Z,et al.A survey on deep reinforcement learning[J].Chinese Journal of Computers,2018,41(1):1-27. [39] VOLODYMYR M,KORAY K,DAVID S,et al.Human-level control through deep reinforcement learning[J].Nature,2019,518(7540):529-533. [40] 姜同全,王子磊,奚宏生.基于动态阈值分配的流媒体边缘云会话迁移策略[J].计算机工程,2017,43(1):55-60. JIANG Tongquan,WANG Zilei,XI Hongsheng.Session migration strategy for streaming media edge cloud based on dynamic threshold allocation[J].Computer Engineering,2017,43(1):55-60. [41] ZHAO J,LI Q,GONG Y,et al.Computation offloading and resource allocation for cloud assisted mobile edge computing in vehicular networks[J].IEEE Transactions on Vehicular Technology,2019,68(8):7944-7956. [42] MENG S,LI Q,WU T,et al.A fault-tolerant dynamic scheduling method on hierarchical mobile edge cloud computing[J].Computational Intelligence,2019,35(3):577-598. [43] XIE G,CHEN Y,XIAO X,et al.Energy-efficient fault-tolerant scheduling of reliable parallel applications on heterogeneous distributed embedded systems[J].IEEE Transactions on Sustainable Computing,2018,3(3):167-181. [44] YAO G,DING Y,HAO K.Using imbalance characteristic for fault-tolerant workflow scheduling in cloud systems[J].IEEE Transactions on Parallel & Distributed Systems,2017,28(12):3671-3683. [45] MENG S,SONG W,WU T,et al.An uncertainty-aware evolutionary scheduling method for cloud service provisioning[C]//Proceedings of the IEEE International Conference on Web Services,2016:506-513. [46] FAN G,CHEN L,YU H,et al.Modeling and analyzing dynamic fault-tolerant strategy for deadline constrained task scheduling in cloud computing[J].IEEE Transactions on Systems Man & Cybernetics Systems,2017,50(4):1260-1274. [47] RAHME J,XU H.A software reliability model for cloud-based software rejuvenation using dynamic fault trees[J].International Journal of Software Engineering & Knowledge Engineering,2015,25:1491-1513. [48] SAMANTA A,TANG J.Dyme:dynamic microservice scheduling in edge computing enabled IoT[J].IEEE Internet of Things Journal,2020,7(7):6164-6174. [49] SAMANTA A,LEI J,MüHLH?USER M,et al.Incentivizing microservices for online resource sharing in edge clouds[C]//Proceedings of the IEEE International Conference on Distributed Computing Systems(ICDCS),2019:420-430. [50] YU R,KILARI V T,XUE G,et al.Load balancing for interdependent IoT microservices[C]//Proceedings of the IEEE Conference on Computer Communications,2019:298-306. [51] KAUR K,GARG S,KADDOUM G,et al.A big data-enabled consolidated framework for energy efficient software defined data centers in IoT setups[J].IEEE Transactions on Industrial Informatics,2020,16(4):2687-2697. [52] YU G,CHEN P,ZHENG Z.Microscaler:cost-effective scaling for microservice applications in the cloud with an online learning approach[J].IEEE Transactions on Cloud Computing,2022,10(2):1100-1116. [53] HU Y,LAAT C D,ZHAO Z.Optimizing service placement for microservice architecture in clouds[J].Applied Sciences,2019,9(21):4663. [54] FILIP I D,POP F,SERBANESCU C,et al.Microservices scheduling model over heterogeneous cloud-edge environments as support for IoT applications[J].IEEE Internet of Things Journal,2018,5(4):2672-2681. [55] BAO L,WU C,BU X,et al.Performance modeling and workflow scheduling of microservice-based applications in clouds[J].IEEE Transactions on Parallel and Distri- buted Systems,2019,30(9):2114-2129. [56] YANG Z,NGUYEN P,JIN H,et al.MIRAS:model-based reinforcement learning for microservice resource allocation over scientific workflows[C]//Proceedings of the 2019 IEEE 39th International Conference on Distributed Computing Systems(ICDCS),2019:122-132. [57] LIU C C,HUANG C C,TSENG C W,et al.Service resource management in edge computing based on microservices[C]//Proceedings of the 2019 IEEE International Conference on Smart Internet of Things(SmartIoT),2019:388-392. [58] WANG S,GUO Y,ZHANG N,et al.Delay-aware microservice coordination in mobile edge computing:a reinforcement learning approach[J].IEEE Transactions on Mobile Computing,2021,20(3):939-951. [59] ZHANG X,ZHENG Y,WEI S,et al.Incentives for mobile crowd sensing:a survey[J].IEEE Communications Surveys & Tutorials,2015,18(1):1-14. [60] WANG J,WANG L,WANG Y,et al.Task allocation in mobile crowd sensing:state-of-the-art and future opportunities[J].IEEE Internet of Things Journal,2018,5(5):3747-3757. [61] WANG J,WANG Y,ZHAO G,et al.The active learning multi-task allocation method in mobile crowd sensing based on normal cloud model[J].Pervasive and Mobile Computing,2020,67:1-19. [62] 景瑶,郭斌,陈荟慧,CrowdTracker:一种基于移动群智感知的目标跟踪方法[J].计算机研究与发展,2019,56(2):328-337. JING Yao,GUO Bin,CHEN Huihui.CrowdTracker:object tracking using mobile crowd sensing[J].Journal of Computer Research and Development,2019,56(2):328-337. [63] JIAN A N,PENG Z L,GUI X L,et al.Research on task distribution mechanism based on public transit system in crowd sensing[J].Chinese Journal of Computers,2019,42(2):65-78. [64] WANG L,YU Z,GUO B,et al.Mobile crowd sensing task optimal allocation:a mobility pattern matching perspective[J].Frontiers of Computer Science,2018,12(2):231-244. [65] YANG Y,LIU W,WANG E,et al.A prediction-based user selection framework for heterogeneous mobile crowd sensing[J].IEEE Transactions on Mobile Computing,2018,18(11):2460-2473. [66] ABOUOUF M,MIZOUNI R,SINGH S,et al.Multi-worker multi-task selection framework in mobile crowd sourcing[J].Journal of Network and Computer Applications,2019,130:52-62. [67] ZHOU J,FAN J,WANG J.Task scheduling for mobile edge computing enabled crowd sensing applications[J].Int J Sensor Networks,2021,35(2):88-98. [68] LIN L,LIAO X,JIN H,et al.Computation offloading toward edge computing[J].Proceedings of the IEEE,2019,107(8):1584-1607. [69] IBIKUNLE F.Cloud computing security issues and challenges[J].International Journal of Computer Networks(IJCN),2011,3(5):247-255. [70] DAMODAR T,SHAILENDRA S,SANJEEV S.Theoretical analysis of bio-inspired load balancing approach in cloud computing environment[J].International Journal of Database Theory and Application,2017,10(11):15-26. [71] HOUSSEIN E H,GAD A G,WAZERY Y M,et al.Task scheduling in cloud computing based on meta-heuristics:review,taxonomy,open challenges,and future trends[J].Swarm and Evolutionary Computation,2021,62:1-41. [72] PANG M,WANG L,FANG N.A collaborative scheduling strategy for IoV computing resources considering location privacy protection in mobile edge computing environment[J].Journal of Cloud Computing,2020,9(1):1-17. [73] WEN Y,LIU J,DOU W,et al.Scheduling workflows with privacy protection constraints for big data applications on cloud[J].Future Generation Computer Systems,2020,108:1084-1091. [74] NAJAFIZADEH A,SALAJEGHEH A,RAHMANI A M,et al.Privacy preserving for the internet of things in multiobjective task scheduling in cloud fog computing using goal programming approach[J].Peer-to-Peer Networking and Applications,2021,14(6):3865-3890. |
[1] | ZHAO Jihong, ZHANG Mengxue, QIAO Linlin, ZHANG Wenjuan, LU Liwei. Intelligent Routing Algorithm Based on SDN Environment Awareness [J]. Computer Engineering and Applications, 2022, 58(8): 90-95. |
[2] | ZHANG Chengrui, KE Peng, YIN Mei. Improved Artificial Bee Colony Algorithm and Its Application in Edge Computing Offloading [J]. Computer Engineering and Applications, 2022, 58(7): 150-161. |
[3] | ZHANG Haibo, TAO Xiaofang, LIU Kaijian. Resource Optimization Scheme for Non-orthogonal Multiple Access in Internet of Vehicles [J]. Computer Engineering and Applications, 2022, 58(6): 103-109. |
[4] | ZHAO Shuxu, YUAN Lin, ZHANG Zhanping. Multi-agent Edge Computing Task Offloading [J]. Computer Engineering and Applications, 2022, 58(6): 177-182. |
[5] | LI Shun, GE Haibo, LIU Linhuan, CHEN Xutao. Collaborative Computing Offloading Strategy in Mobile Edge Computing [J]. Computer Engineering and Applications, 2022, 58(21): 83-90. |
[6] | HUO Xiangzuo, ZHANG Wendong, TIAN Shengwei, HOU Shuxiang. Parallel Decoder Image Inpainting Method for Edge-Terminal Collaboration [J]. Computer Engineering and Applications, 2022, 58(16): 257-264. |
[7] | DENG Yu, ZHAO Junhui, ZHANG Qingmiao. Two-Level Multi-Access Edge Computing Energy-Saving Offloading Strategy for IoT [J]. Computer Engineering and Applications, 2022, 58(13): 94-101. |
[8] | ZHANG Chi, WANG Yuxin, FENG Zhen, GUO He. Energy-Efficient Task Scheduling Algorithm in Two-Layer Virtualized Cloud Architecture [J]. Computer Engineering and Applications, 2021, 57(3): 103-111. |
[9] | XU Xiaodong, WANG Junjie. Real-Time Construction Worker Detection Method for Edge Device [J]. Computer Engineering and Applications, 2021, 57(23): 280-286. |
[10] | TIAN Zhuojing, HUANG Zhenchun, ZHANG Yinong. Review of Task Scheduling Methods in Cloud Computing Environment [J]. Computer Engineering and Applications, 2021, 57(2): 1-11. |
[11] | WANG Yunfeng, LI Zuopeng. Application Research of Object Detection Algorithm in Edge Environment [J]. Computer Engineering and Applications, 2021, 57(16): 220-227. |
[12] | HU Heng, JIN Fenglin, LANG Siqi. Survey of Research on Computation Offloading Technology in Mobile Edge Computing Environment [J]. Computer Engineering and Applications, 2021, 57(14): 60-74. |
[13] | LIU Jiajia, WU Hao, LI Panpan. Research on Edge Computing Security of Railway 5G Mobile Communication System [J]. Computer Engineering and Applications, 2021, 57(12): 1-10. |
[14] | ZHANG Yu, ZHANG Yansong. Research on Vector Grouping Aggregation Technology [J]. Computer Engineering and Applications, 2021, 57(11): 84-94. |
[15] | WU Bo, WU Jing, LUO Wei, ZHU Jie. Service-Related Routing Method Based on Programmable Data Plane [J]. Computer Engineering and Applications, 2020, 56(3): 106-112. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||