WANG Guodong, TANG Jinliang, CHEN Tehuan, CUI Jie. Real-Time Detection Algorithm for Differential Housing Surface Defects Based on Improved FSSD[J]. Computer Engineering and Applications, 2022, 58(22): 262-270.
[1] 樊智涛,刘洋.基于WorkBench的差速器壳体有限元分析及轻量化设计[J].军事交通学院学报,2020,22(2):91-95.
FAN Z T,LIU Y.Finite element analysis and lightweight design of differential housing based on WorkBench[J].Journal of the Academy of Military Transportation,2020,22(2):91-95.
[2] 李明山,韩清鹏,张天宇,等.改进SSD的安全帽检测方法[J].计算机工程与应用,2021,57(8):192-197.
LI M S,HAN Q P,ZHANG T Y,et al.Safety helmet detection method of improved SSD[J].Computer Engineering and Applications,2021,57(8):192-197.
[3] GIRSHICK R,DONAHUE J,DARRELLAND T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE International Conference Computer Vision and Pattern Recognition,Columbus,Jun 23-28,2014:580-587.
[4] GIRSHICK R,Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision,Santiago,Dec 7-13,2015:1440-1448.
[5] REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.
[6] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,Jun 27-30,2016:779-788.
[7] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[J/OL].(2016-12-29)[2020-06-07].https://arxiv.org/abs/1512.02325.
[8] 辛鹏,许悦雷,唐红,等.全卷积网络多层特征融合的飞机快速检测[J].光学学报,2018,38(3):0315003.
XIN P,XU Y L,TANG H,et al.Fast aircraft detection based on multi-layer feature fusion of full convolutional network[J].Acta Optica Sinica,2018,38(3):0315003.
[9] 马露,裴伟,朱永英,等.基于深度学习的跌倒行为识别[J].计算机科学,2019,46(9):106-112.
MA L,PEI W,ZHU Y Y,et al.Fall behavior recognition based on deep learning[J].Computer Science,2019,46(9):106-112.
[10] FU C Y,LIU W,RANGA A,et al.DSSD:deconvolutional single shot detector[J/OL].(2017-01-23)[2020-06-07].https://arxiv.org/abs/1701.06659.
[11] 王永祥.基于机器视觉的差速器壳体识别技术研究[D].济南:山东大学,2020.
WANG Y X.Research on differential case recognition technology based on machine vision[D].Jinan:Shandong University,2020.
[12] 陈辉,朱易坤,周林娟,等.汽轮机铸件汽缸疏松缺陷超声波检测研究[J].机械,2018,45(10):77-80.
CHEN H,ZHU Y K,ZHOU L J,et al.Research on ultrasonic inspection of turbine cylinder porosity defects[J].Machinery,2018,45(10):77-80.
[13] FERGUSON M,AK R,LEE Y T T,et al.Automatic localization of casting defects with convolutional neural networks[C]//2017 IEEE International Conference on Big Data,Boston,Dec 11-14,2017:1726-1735.
[14] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J/OL].(2015-04-10)[2019-12-12].https://arxiv.org/abs/1409.1556.
[15] 周凡,朴燕,秦晓伟.基于密集模块与特征融合的SSD目标检测算法[J].计算机工程与应用,2020,56(16):105-111.
ZHOU F,PIAO Y,QIN X W.SSD target detection algorithm based on dense module and feature fusion[J].Computer Engineering and Applications,2020,56(16):105-111.
[16] LI Z X,ZHOU F Q.FSSD:feature fusion single shot multibox detector[J/OL].(2018-05-17)[2020-06-07].https://arxiv.org/abs/1712.00960.
[17] LIN T Y,DOLLAR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,Jul 21-26,2017:936-944.
[18] 高洁,王战红,刘纲.基于FSSD的微光烟雾检测方法[J].电子测量技术,2021,44(5):123-128.
GAO J,WANG Z H,LIU G.Low-light smoke detection method based on FSSD[J].Electronic Measurement Technology,2021,44(5):123-128.
[19] HOWARD A,ZHU M L,CHEN B,et al.MobileNets:efficient convolutional neural networks for mobile vision applications[J/OL].(2019-04-17)[2020-06-07].https://arxiv.org/abs/1704.04861.
[20] CAESAR H,UIJLINGS J,FERRARI V.COCO-stuff:thing and stuff classes in context[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,Jun 18-23,2018:1209-1218.
[21] EVERINGHAM M,GOOL L,WILLIAMS C K I,et al.The pascal visual object classes(VOC) challenge[J].International Journal of Computer Vision,2020,88(2):303-338.
[22] TIELEMAN T,HINTON G.Lecture 6.5-RMSProp:divide the gradient by a running average of its recent magnitude[J].COURSERA:Neural Networks for Machine Learning,2012,4(2):26-31.