MA Chi, ZENG Guohui, HUANG Bo, LIU Jin. Marine Predator Algorithm Based on Chaotic Opposition Learning and Group Learning[J]. Computer Engineering and Applications, 2022, 58(22): 271-283.
[1] WU G H,Across neighborhood search for numerical opti-mization[J].Information Sciences,2016,329:597-618.
[2] KAMBOJ V K,NANDI A,BHADORIA A,et al.An intensify Harris Hawks optimizer for numerical and engineering optimization problems[J].Applied Soft Computing,2020,89:106018.
[3] 彭鹏,倪志伟,朱旭辉,等.基于改进二元萤火虫群优化算法和邻域粗糙集的属性约简方法[J].模式识别与人工智能,2020,33(2):95-105.
PENG P,NI Z W,ZHU X H,et al.Attribute reduction method based on improved binary glowworm swarm optimization algorithm and neighborhood rough set[J].Pattern Recognition and Artificial Intelligence,2020,33(2):95-105.
[4] 张德惠,游晓明,刘升.融合猫群算法的动态分组蚁群算法[J].计算机科学与探索,2020,14(5):880-891.
ZHANG D H,YOU X M,LIU S.Dynamic grouping ant colony algorithm combined with cat swarm optimization[J].Journal of Frontiers of Computer Science and Technology,2020,14(5):880-891.
[5] ZHANG L,LIU M,HAO J,et al.Scheduling semiconductor wafer fabrication using a new harmony search algorithmbased on receipt priority interval[J].Chinese Journal of Electronics,2016,25(5):866-872.
[6] FARAMARZI A,HEIDARINEJAD M,MIRJALILI S,et al.Marine predators algorithm:a nature-inspired metaheuristic[J].Expert Systems with Applications,2020,152:113377.
[7] ELAZIZ M A,EWEES A A,YOUSRI D,et al.An improved marine predators algorithm with fuzzy entropy for multi-level thresholding:real world example of COVID-19 CT image segmentation[J].IEEE Access,2020,8:125306-125330.
[8] ABDEL-BASSE M,MOHAMED R,ELHOSENY M,et al.A hybrid COVID-19 detection model using an improved marine predators algorithm and a ranking-based diversity reduction strategy[J].IEEE Access,2020,8:79521-79540.
[9] FAN Q S,HUNAG H S,CHEN Q P,et al.A modified self-adaptive marine predators algorithm:framework and engineering applications[J].Engineering with Computers,2022,38:3269-3294.
[10] ELAZIZ M A,THANIKANTI S B,LBRAHIM I A,et al.Enhanced marine predators algorithm for identifying static and dynamic photovoltaic models parameters[J].Energy Conversion and Management,2021,236:113971.
[11] 邵良杉,李臣浩.基于改进花粉算法的极限学习机分类模型[J].计算机工程与应用,2020,56(1):172-179.
SHAO L S,LI C H.Classification model of extreme learning machine based on improved pollen algorithm[J].Computer Engineering and Applications,2020,56(1):172-179.
[12] TIZHOOSH H R.Opposition-based learning:a new scheme for machine intelligence[C]//International Conference on Computational Intelligence for Modelling,Control and Automation and International Conference on Intelligent Agents,Vienna,2005:695-701.
[13] 岳小雪,郑云水,林俊亭.基于改进WNN的城市轨道交通客流量预测[J].计算机工程与应用,2016,52(11):227-232.
YUE X X,ZHENG Y S,LIN J T.Passenger flow forecast of urban rail transit based on improved WNN[J].Computer Engineering and Applications,2016,52(11):227-232.
[14] 赵世杰,高雷阜,于冬梅,等.基于变因子加权学习与邻代维度交叉策略的改进CSA算法[J].电子学报,2019,47(1):40-48.
ZHAO S J,GAO L F,YU D M,et al.Improved CSA algorithm based on variable factor weighted learning and adjacent generation dimension crossover strategy[J].Acta Electronica Sinica,2019,47(1):40-48.
[15] 郭佳丽,王秋萍,王晓峰.融合学习策略和邻域搜索的飞蛾火焰算法[J].计算机工程与应用,2021,57(12):170-179.
GUO J L,WANG Q P,WANG X F.Moth flame optimization based on learning strategy and neighborhood search[J].Computer Engineering and Applications,2021,57(12):170-179.
[16] 张水平,高栋.基于随机替换和混合变异的蜻蜓算法[J].科学技术与工程,2020,20(22):9108-9115.
ZHANG S P,GAO D.Dragonfly algorithm based on random substitution and hybrid mutation[J].Science Technology and Engineering,2020,20(22):9108-9115.
[17] 彭智,谢玲.混合优化算法的全局收敛性分析[J].北京理工大学学报,2012,32(4):435-440.
PENG Z,XIE L.Global convergence analysis of hybrid optimization algorithms[J].Transactions of Beijing Institute of Technology,2012,32(4):435-440.
[18] DERRAC J,GARCíA S,MOLINA D,et al.A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms[J].Swarm & Evolutionary Computation,2011,1(1):3-18.
[19] 唐菁敏,曲文博,苏慧慧,等.一种基于帝企鹅差分算法的WSN覆盖优化[J].云南大学学报(自然科学版),2021,43(1):46-51.
TANG J M,QU W B,SU H H,et al.Coverage optimization of WSN based on emperor penguin difference algorithm[J].Journal of Yunnan University(Natural Sciences Edition),2021,43(1):46-51.