New GAN-Based Partial Realistic Anime Image Style Transfer
SUN Tianpeng, ZHOU Ningning, HUANG Guofang
1.School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
2.NARI Technology Co., Ltd., Nanjing 211106, China
[1] 陈淑環,韦玉科,徐乐,等.基于深度学习的图像风格迁移研究综述[J].计算机应用研究,2019,36(8):2250-2255.
CHEN S H,WEI Y K,XU L,et al.A review of image style transfer based on deep learning[J].Application Research of Computers,2019,36(8):2250-2255.
[2] STROTHOTTE T,SCHLECHTWEG S.Non-photorealistic computer graphics:modeling,rendering,and animation[M].[S.l.]:Morgan Kaufmann,2002.
[3] 陈淮源,张广驰,陈高,等.基于深度学习的图像风格迁移进展[J].计算机工程与应用,2021,57(11):37-45.
CHEN H Y,ZHANG G C,CHEN G,et al.Research progress of image style transfer based on deep learning[J].Computer Engineering and Applications,2021,57(11):37-45.
[4] GATYS L A,ECKER A S,BETHGE M.Image style transfer using convolutional neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:2414-2423.
[5] JOHNSON J,ALAHI A,FEI-FEI L.Perceptual losses for real-time style transfer and super-resolution[C]//European Conference on Computer Vision.Cham:Springer,2016:694-711.
[6] LUAN F,PARIS S,SHECHTMAN E,et al.Deep photo style transfer[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:4990-4998.
[7] LI C,WAND M.Combining Markov random fields and convolutional neural networks for image synthesis[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:2479-2486.
[8] HUANG X,BELONGIE S.Arbitrary style transfer in real-time with adaptive instance normalization[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:1501-1510.
[9] LI Y,FANG C,YANG J,et al.Universal style transfer via feature transforms[C]//Advances in Neural Information Processing Systems,2017:386-396.
[10] RADFORD A,METZ L,CHINTALA S.Unsupervised representation learning with deep convolutional generative adversarial networks[J].arXiv:1511.06434,2015.
[11] ZHU J Y,PARK T,ISOLA P,et al.Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:2223-2232.
[12] CHEN Y,LAI Y K,LIU Y J.CartoonGAN:generative adversarial networks for photo cartoonization[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:9465-9474.
[13] CHEN J,LIU G,CHEN X.AnimeGAN:a novel lightweight GAN for photo animation[C]//International Symposium on Intelligence Computation and Applications.Singapore:Springer,2019:242-256.
[14] YOSINSKI J,CLUNE J,BENGIO Y,et al.How transferable are features in deep neural networks?[J].arXiv:1411.1792,2014.
[15] CRESWELL A,WHITE T,DUMOULIN V,et al.Generative adversarial networks:an overview[J].IEEE Signal Processing Magazine,2018,35(1):53-65.
[16] HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:7132-7141.
[17] WOO S,PARK J,LEE J Y,et al.CBAM:convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:3-19.
[18] NASCIMENTO M G,FAWCETT R,PRISACARIU V A.DSConv:efficient convolution operator[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:5148-5157.