[1] XIONG H T, LIU Z B. A situation information integrated personalized travel package recommendation approach based on TD-LDA model[C]//Proceedings of the 2015 International Conference on Behavioral, Economic and Socio-cultural Computing. Piscataway: IEEE, 2015: 32-37.
[2] WANG S F, GONG M G, WU Y, et al. Multi-objective optimization for location-based and preferences-aware recommendation[J]. Information Sciences, 2020, 513: 614-626.
[3] WU S W, SUN F, ZHANG W T, et al. Graph neural networks in recommender systems: a survey[J]. ACM Computing Surveys, 2023, 55(5): 1-37.
[4] CHEN L, WU L, HONG R C, et al. Revisiting graph based collaborative filtering: a linear residual graph convolutional network approach[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(1): 27-34.
[5] GU S Y, WANG X, SHI C, et al. Self-supervised graph neural networks for multi-behavior recommendation[C]//Proceedings of the 31st International Joint Conference on Artificial Intelligence, 2022: 2052-2058.
[6] LIU W M, SU J J, CHEN C C, et al. Leveraging distribution alignment via stein path for cross-domain cold-start recommendation[C]//Advances in Neural Information Processing Systems 34, 2021: 19223-19234.
[7] 黄若然, 崔莉, 韩传奇. 推荐系统中稀疏情景预测的特征-类别交互因子分解机[J]. 计算机研究与发展, 2022, 59(7): 1553-1568.
HUANG R R, CUI L, HAN C Q. Feature-over-field interaction factorization machine for sparse contextualized prediction in recommender systems[J]. Journal of Computer Research and Development, 2022, 59(7): 1553-1568.
[8] ZHANG Q R, XIA L H, CAI X H, et al. Graph augmentation for recommendation[C]//Proceedings of the 2024 IEEE 40th International Conference on Data Engineering. Piscataway: IEEE, 2024: 557-569.
[9] YOU Y N, CHEN T L, SUI Y D, et al. Graph contrastive learning with augmentations[C]//Advances in Neural Information Processing Systems 33, 2020: 5812-5823.
[10] 吴国栋, 吴贞畅, 王雪妮, 等. 图对比学习研究进展[J]. 小型微型计算机系统, 2025, 46(1): 44-54.
WU G D, WU Z C, WANG X N, et al. Graph contrastive learning research progress[J]. Journal of Chinese Computer Systems, 2025, 46(1): 44-54.
[11] CHEN M R, HUANG C, XIA L H, et al. Heterogeneous graph contrastive learning for recommendation[C]//Proceedings of the 16th ACM International Conference on Web Search and Data Mining. New York: ACM, 2023: 544-552.
[12] WU J C, WANG X, FENG F L, et al. Self-supervised graph learning for recommendation[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 726-735.
[13] YU J, YIN H, XIA X, et al. Are graph augmentations necessary? Simple graph contrastive learning for recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 1294-1303.
[14] XIA L H, HUANG C, XU Y, et al. Hypergraph contrastive collaborative filtering[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 70-79.
[15] VAN DEN OORD A, LI Y Z, VINYALS O. Representation learning with contrastive predictive coding[J]. arXiv:1807. 03748, 2018.
[16] CHUANG C Y, HJELM R D, WANG X, et al. Robust contrastive learning against noisy views[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 16649-16660.
[17] WANG X, JI H Y, SHI C, et al. Heterogeneous graph attention network[C]//Proceedings of the World Wide Web Conference 2019. New York: ACM, 2019: 2022-2032.
[18] HU Z N, DONG Y X, WANG K S, et al. Heterogeneous graph transformer[C]//Proceedings of the Web Conference 2020. New York: ACM, 2020: 2704-2710.
[19] FU X Y, ZHANG J N, MENG Z Q, et al. MAGNN: metapath aggregated graph neural network for heterogeneous graph embedding[C]//Proceedings of the Web Conference 2020. New York: ACM, 2020: 2331-2341.
[20] YAN B, CAO Y, WANG H Y, et al. Federated heterogeneous graph neural network for privacy-preserving recommendation[C]//Proceedings of the ACM Web Conference 2024. New York: ACM, 2024: 3919-3929.
[21] JIANG Z, LIU H, FU B, et al. Recommendation in heterogeneous information networks based on generalized random walk model and Bayesian personalized ranking[C]//Proceedings of the 11th ACM International Conference on Web Search and Data Mining. New York: ACM, 2018: 288-296.
[22] SHI C, ZHANG Z Q, LUO P, et al. Semantic path based personalized recommendation on weighted heterogeneous information networks[C]//Proceedings of the 24th ACM International Conference on Information and Knowledge Management. New York: ACM, 2015: 453-462.
[23] SHI C, HU B B, ZHAO W X, et al. Heterogeneous information network embedding for recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 31(2): 357-370.
[24] GROVER A, LESKOVEC J. node2vec: scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 855-864.
[25] YU X, REN X, SUN Y Z, et al. Personalized entity recommendation: a heterogeneous information network approach[C]//Proceedings of the 7th ACM International Conference on Web Search and Data Mining. New York: ACM, 2014: 283-292.
[26] XIA L H, XU Y, HUANG C, et al. Graph meta network for multi-behavior recommendation[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 757-766.
[27] XUAN S Y, ZHANG S L. Decoupled contrastive learning for long-tailed recognition[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(6): 6396-6403.
[28] CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[C]//Proceedings of the 37th International Conference on Machine Learning, 2020: 1597-1607.
[29] LI J N, ZHOU P, XIONG C M, et al. Prototypical contrastive learning of unsupervised representations[J]. arXiv:2005. 04966, 2020.
[30] JING L, VINCENT P, LECUN Y, et al. Understanding dimensional collapse in contrastive self-supervised learning[J]. arXiv:2110.09348, 2021.
[31] HE X N, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 639-648.
[32] PAN F Y, LI S K, AO X, et al. Warm up cold-start advertisements: improving CTR predictions via learning to learn ID embeddings[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 695-704.
[33] RAJWADE A, RANGARAJAN A, BANERJEE A. Image denoising using the higher order singular value decomposition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(4): 849-862.
[34] HALKO N, MARTINSSON P G, TROPP J A. Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions[J]. SIAM Review, 2011, 53(2): 217-288.
[35] CAI X H, HUANG C, XIA L H, et al. LightGCL: simple yet effective graph contrastive learning for recommendation[J]. arXiv:2302.08191, 2023.
[36] RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[J]. arXiv:1205.2618, 2012.
[37] HU B B, SHI C, ZHAO W X, et al. Leveraging meta-path based context for top-N recommendation with a neural co-attention model[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 1531-1540.
[38] WANG X, LIU N, HAN H, et al. Self-supervised heterogeneous graph neural network with co-contrastive learning[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2021: 1726-1736.
[39] YANG L W, WANG S J, TAO Y Z, et al. DGRec: graph neural network for recommendation with diversified embedding generation[C]//Proceedings of the 16th ACM International Conference on Web Search and Data Mining. New York: ACM, 2023: 661-669.
[40] LONG X L, HUANG C, XU Y, et al. Social recommendation with self-supervised metagraph informax network[C]//Proceedings of the 30th ACM International Conference on Information and Knowledge Management. New York: ACM, 2021: 1160-1169. |