计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (22): 159-169.DOI: 10.3778/j.issn.1002-8331.2408-0107

• 模式识别与人工智能 • 上一篇    下一篇

融合元知识和SVD的多视图对比学习推荐系统

刘景祥,王锋,魏巍   

  1. 山西大学 计算机与信息技术学院,太原 030006
  • 出版日期:2025-11-15 发布日期:2025-11-14

Multi-View Contrastive Learning for Recommendation with Meta-Knowledge and SVD

LIU Jingxiang, WANG Feng, WEI Wei   

  1. School of Computer and Information Technology, Shanxi University, Taiyuan 030006, China
  • Online:2025-11-15 Published:2025-11-14

摘要: 目前的异构图对比学习通常依赖于单一的方法来构建辅助视图以进行数据增强。考虑到异构建模下用户和商品间交互的复杂性,单一构造方法下的辅助视图往往难以有效捕捉异构数据中丰富的语义信息。为此,提出了融合元知识和奇异值分解(singular value decomposition,SVD)的多视图对比学习推荐模型(multi-view contrastive learning,MVCL)。引入了个性化数据增强模块,并采用不同方法从多角度构建了辅助视图。其中辅助视图的构建方法具体包括两点,分别是:针对用户商品间的内在联系,通过元知识融合来个性化映射构造辅助视图;针对用户商品间交互,通过近似奇异值分解的方法构建辅助视图,实现自适应对比增强。为有效解决传统对比损失抗噪声能力较弱的问题,使用了鲁棒性更强的增强型对比损失函数作为输出,进一步提升了模型的推荐性能。在此基础上,为进一步验证所提出模型的有效性,在CiaoDVD、Epinions、Yelp三个公开数据集上进行了实验,实验结果表明提出的新模型在不同场景下均呈现了较好的性能,有效验证了该模型在解决异构数据稀疏性和利用丰富语义信息方面的可行性。

关键词: 推荐系统, 异构图, 对比学习, 辅助视图, 元知识学习

Abstract: Current heterogeneous graph contrastive learning typically relies on a single method to construct auxiliary views for data augmentation. Considering the complexity of interactions between users and items under heterogeneous modeling, single-method approaches often fall short in capturing the rich semantic information inherent in user-item interactions. To address this, this paper proposes a multi-view contrastive learning (MVCL) recommendation model with meta-knowledge and SVD (singular value decomposition). This model introduces a personalized data augmentation module that constructs auxiliary views from multiple perspectives. Specifically, the construction methods of auxiliary views include two key points: Firstly, for intrinsic relationships between users and items, auxiliary views are constructed through personalized mapping via meta-knowledge fusion; Secondly, for user-item interactions, auxiliary views are constructed by using approximate singular value decomposition to achieve adaptive contrastive enhancement. Additionally, an enhanced robust contrastive loss function is utilized to mitigate noise sensitivity, further improving recommendation performance. Experiments on the CiaoDVD, Epinions, and Yelp datasets demonstrate that MVCL consistently outperforms existing models, validating its effectiveness in addressing data sparsity and capturing rich semantic information in heterogeneous contexts.

Key words: recommendation system, heterogeneous graph, contrastive learning, auxiliary views, meta-knowledge learning