计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (16): 187-195.DOI: 10.3778/j.issn.1002-8331.2404-0246

• 模式识别与人工智能 • 上一篇    下一篇

融合分段式位置信息的图卷积中文关系抽取

王婷婷,韩虎,何勇禧,孔博   

  1. 1.兰州交通大学 电子与信息工程学院,兰州 730070 
    2.甘肃省人工智能与图形图像工程研究中心,兰州 730070
  • 出版日期:2025-08-15 发布日期:2025-08-15

Graph Convolutional Chinese Relation Extraction Fused with Piecewise Position Information

WANG Tingting, HAN Hu, HE Yongxi, KONG Bo   

  1. 1.School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
    2.Gansu Artificial Intelligence and Graphic Image Engineering Research Center, Lanzhou 730070, China
  • Online:2025-08-15 Published:2025-08-15

摘要: 关系抽取任务旨在识别句子中实体间的语义关系。针对中文关系抽取任务中语义信息挖掘不充分以及引入语法依赖产生的噪声问题,提出一种融合分段式位置信息的图卷积中文关系抽取模型。一方面引入实体的位置信息,在初始文本上添加相对位置编码,通过分段卷积神经网络将实体位置信息集成到局部特征中,并引入门控注意力机制构建注意力权重矩阵,捕获全局语义特征。另一方面通过语法剪枝规则构建局部语法依赖图捕获语法信息,去除与特定实体语法距离较远且无关的分支来避免噪声干扰。最后采用门控机制动态融合不同粒度的语义信息,实现不同类型信息的共享与互补。在三个公开中文数据集SanWen、FinRE和COAE2016上的实验结果表明,该模型可以有效捕获语义语法信息,对比基线模型表现出了较好的性能。

关键词: 中文关系抽取, 图卷积网络, 分段式位置信息, 语法剪枝, 门控注意力

Abstract: The relationship extraction task aims to recognize the semantic relationships between entities in a sentence. Aiming at the problems of insufficient semantic information mining and the noise generated by introducing syntactic dependencies in the Chinese relation extraction task, a graph convolutional Chinese relation extraction model incorporating piecewise position information is proposed. On the one hand, the position information of entities is introduced, the relative position encoding is added to the initial text, the entity position information is integrated into the local features by segmented convolutional neural network, and the gated attention mechanism is introduced to construct the attention weight matrix to capture the global semantic features. On the other hand, the local syntactic dependency graph is constructed by syntactic pruning rule to capture the syntactic information, and the branches that are far away and irrelevant to the syntax of a specific entity are removed to avoid noise interference. Finally, a gated mechanism is used to dynamically fuse semantic information of different granularities to realize the sharing and complementarity of different types of information. Experimental results on three publicly available Chinese datasets, SanWen, FinRE, and COAE2016, show that the model can effectively capture semantic syntactic information and exhibits better performance than the baseline model.

Key words: Chinese relation extraction, graph convolutional network, piecewise location information, syntactic pruning, gated attention