计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (16): 179-186.DOI: 10.3778/j.issn.1002-8331.2406-0366

• 模式识别与人工智能 • 上一篇    下一篇

面向长期时间序列预测的多局部增强线性解码器研究

陈子盎,郭世伟,马玉鹏,韩云飞,王保全   

  1. 1.中国科学院 新疆理化技术研究所,乌鲁木齐 830011
    2.中国科学院大学,北京 100049
    3.新疆民族语音语言信息处理重点实验室,乌鲁木齐 830011
  • 出版日期:2025-08-15 发布日期:2025-08-15

Research on Multiple Local Augmented Linear Decoders for Long-Term Time Series Forecasting

CHEN Zi'ang, GUO Shiwei, MA Yupeng, HAN Yunfei, WANG Baoquan   

  1. 1.Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
    3.Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China
  • Online:2025-08-15 Published:2025-08-15

摘要: 在长期时间序列预测(long-term time series forecasting,LTSF)领域,采用编码器-解码器架构的深度学习模型展现出了卓越的性能。目前,虽然编码器从输入的历史序列中能够提取深层次的时间变化特征,捕获时间序列内部的周期性、趋势性以及局部信息相关性,但是解码器多依赖于编码器输出的全局特征,对编码器提取的局部特征利用不充分,限制了模型的预测性能。为充分挖掘和利用局部特征,提出了一种多局部增强线性解码器(multiple local augmented linear decoders,MLAD),通过引入局部特征增强机制(local feature augmented mechanism,LFAM),在编码器生成的特征序列上进行滑动,并将提取的局部特征与原始历史序列融合,从而生成多个局部增强序列,然后通过计算所有的局部增强序列对应预测序列的平均值来确定预测结果。在7个公开数据集上进行实验,结果表明MLAD达到或超过了现有主流模型性能,证明了其在LTSF任务中的有效性。

关键词: 长期时间序列预测(LTSF), 多局部增强线性解码器(MLAD), 局部特征增强机制(LFAM)

Abstract: In the field of long-term time series forecasting (LTSF), deep learning models with encoder-decoder architectures have demonstrated outstanding performance. Currently, although the encoder can extract deep-level temporal features from the input historical sequence, and capture the periodicity, trends and local information correlation within the time series, the decoder mostly relies on the global features output by the encoder, failing to fully utilize the local features extracted by the encoder, which limits the predictive performance of models. To fully explore and utilize local features, this paper proposes a multiple local augmented linear decoders (MLAD) approach. By introducing a local feature augmented mechanism (LFAM), it slides over the feature sequence generated by the encoder, and integrates the extracted local features with the original historical sequence to generate multiple local augmented sequences. The prediction result is determined by calculating the average of the prediction sequences corresponding to all local augmented sequences. Experiments conducted on 7 public datasets show that MLAD achieves or surpasses the performance of existing mainstream models, demonstrating its effectiveness in LTSF tasks.

Key words: long-term time series forecasting (LTSF), multiple local augmented linear decoders (MLAD), local feature augmented mechanism (LFAM)