[1] 詹熙, 潘志松, 黎维, 等. 基于多尺度特征和注意力的金融时序预测方法[J]. 计算机工程与应用, 2022, 58(19): 107-115.
ZHAN X, PAN Z S, LI W, et al. Financial time series forecasting method based on multi-scale features and attention mechanism[J]. Computer Engineering and Applications, 2022, 58(19): 107-115.
[2] HEWAGE P, BEHERA A, TROVATI M, et al. Temporal convolutional neural (TCN) network for an effective weather forecasting using time-series data from the local weather station[J]. Soft Computing, 2020, 24(21): 16453-16482.
[3] NTI I K, TEIMEH M, NYARKO-BOATENG O, et al. Electricity load forecasting: a systematic review[J]. Journal of Electrical Systems and Information Technology, 2020, 7(1): 13.
[4] 高榕, 万以亮, 邵雄凯, 等. 面向改进的时空Transformer的交通流量预测模型[J]. 计算机工程与应用, 2023, 59(7): 250-260.
GAO R, WAN Y L, SHAO X K, et al. Traffic flow forecasting model for improved spatio-temporal transformer[J]. Computer Engineering and Applications, 2023, 59(7): 250-260.
[5] AHMED N K, ATIYA A F, EL GAYAR N, et al. An empirical comparison of machine learning models for time series forecasting[J]. Econometric Reviews, 2010, 29(5/6): 594-621.
[6] RICHMAN J S, MOORMAN J R. Physiological time-series analysis using approximate entropy and sample entropy[J]. American Journal of Physiology Heart and Circulatory Physiology, 2000, 278(6): H2039-H2049.
[7] GRAVES A. Long short-term memory[M]//Supervised sequence labelling with recurrent neural networks. Berlin, Heidelberg: Springer, 2012: 37-45.
[8] CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. arXiv:1406.1078, 2014.
[9] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017.
[10] NIU D X, YU M, SUN L J, et al. Short-term multi-energy load forecasting for integrated energy systems based on CNN-BiGRU optimized by attention mechanism[J]. Applied Energy, 2022, 313: 118801.
[11] WU H X, XU J H, WANG J M, et al. Autoformer: decomposition transformers with auto-correlation for long-term series forecasting[C]//Advances in Neural Information Processing Systems 34, 2021: 22419-22430.
[12] ZHOU T, MA Z Q, WEN Q S, et al. FEDformer: frequency enhanced decomposed transformer for long-term series forecasting[C]//Proceedings of the 39th International Conference on Machine Learning, 2022: 27268-27286.
[13] ZHOU H Y, ZHANG S H, PENG J Q, et al. Informer: beyond efficient transformer for long sequence time-series forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(12): 11106-11115.
[14] NIE Y Q, NGUYEN N H, SINTHONG P, et al. A time series is worth 64 words: long-term forecasting with transformers[J]. arXiv:2211.14730, 2022.
[15] WANG H, PENG J, HUANG F, et al. MICN: multi-scale local and global context modeling for long-term series forecasting[C]//Proceedings of the 11th International Conference on Learning Representations, 2023.
[16] LIU M H, ZENG A L, CHEN M X, et al. SCINet: time series modeling and forecasting with sample convolution and interaction[C]//Advances in Neural Information Processing Systems 35, 2022: 5816-5828.
[17] GONG Z Y, TANG Y J, LIANG J W. PatchMixer: a patch-mixing architecture for long-term time series forecasting[J]. arXiv:2310.00655, 2023.
[18] LIN S S, LIN W W, WU W T, et al. SegRNN: segment recurrent neural network for long-term time series forecasting[J]. arXiv:2308.11200, 2023.
[19] WU H X, HU T G, LIU Y, et al. TimesNet: temporal 2D-variation modeling for general time series analysis[C]//Proceedings of the 11th International Conference on Learning Representations, 2023.
[20] CHALLU C, OLIVARES K G, ORESHKIN B N, et al. NHITS: neural hierarchical interpolation for time series forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(6): 6989-6997.
[21] FAN W, ZHENG S, YI X H, et al. DEPTS: deep expansion learning for periodic time series forecasting[J]. arXiv:2203. 07681, 2022.
[22] OLIVARES K G, CHALLU C, MARCJASZ G, et al. Neural basis expansion analysis with exogenous variables: forecasting electricity prices with NBEATSx[J]. International Journal of Forecasting, 2023, 39(2): 884-900.
[23] DAS A, KONG W H, LEACH A, et al. Long-term forecasting with TiDE: time-series dense encoder[J]. arXiv:2304.08424, 2023.
[24] ZENG A L, CHEN M X, ZHANG L, et al. Are transformers effective for time series forecasting?[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(9): 11121-11128.
[25] LI Z, RAO Z W, PAN L J, et al. MTS-mixers: multivariate time series forecasting via factorized temporal and channel mixing[J]. arXiv: 2304. 08424, 2023.
[26] CHEN S A, LI C L, YODER N, et al. TSMixer: an all-MLP architecture for time series forecasting[J]. arXiv:2303.06053, 2023.
[27] ULYANOV D, VEDALDI A, LEMPITSKY V. Instance normalization: the missing ingredient for fast stylization[J]. arXiv:1607.08022, 2016.
[28] KIM T, KIM J, TAE Y, et al. Reversible instance normalization for accurate time-series forecasting against distribution shift[C]//Proceedings of the 10th International Conference on Learning Representations, 2022. |