计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (16): 171-178.DOI: 10.3778/j.issn.1002-8331.2407-0179

• 模式识别与人工智能 • 上一篇    下一篇

基于平面化句子表示提升关系抽取性能

王昊,陈艳平,黄瑞章,秦永彬   

  1. 1.贵州大学 文本计算与认知智能教育部工程研究中心,贵阳 550025
    2.贵州大学 公共大数据国家重点实验室,贵阳 550025
    3.贵州大学 计算机科学与技术学院,贵阳 550025
  • 出版日期:2025-08-15 发布日期:2025-08-15

Improving Sentence-Level Relation Extraction Through Planarized Sentence Representation

WANG Hao, CHEN Yanping, HUANG Ruizhang, QIN Yongbin   

  1. 1.Text Computing & Cognitive Intelligence Engineering Research Center of National Education Ministry, Guizhou University, Guiyang 550025, China
    2.State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, China
    3.College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
  • Online:2025-08-15 Published:2025-08-15

摘要: 关系抽取旨在识别句子中命名实体之间的关系。上下文语境决定了命名实体间的真实关系,因此研究者们期望模型能够正确识别上下文语境中反映的实体语义关系。然而,现有的关系抽取模型在很大程度上倾向于对实体名称模式的记忆,即通过学习和匹配特定实体名称组合来推断关系,而非基于上下文信息进行关系判断。这种对上下文信息的忽视可能导致模型在面对复杂语境、多义实体或罕见关系表达时,其预测性能受到限制,无法达到理想状态下的高精度与强泛化。为了解决这一问题,通过将输入文本转化为抽象的语义平面,并直接基于整个语义平面的信息进行关系判断,从而强制模型在预测实体间关系时考虑上下文信息。实验证明,该方法在中文文学文本语料、ACE05英文和SemEval-2010 Task-8三个数据集上的F1分数分别超过之前的相关研究1.9、1.03和0.39个百分点,有效提高了模型对上下文信息的利用程度和对复杂文本中实体关系的理解深度。

关键词: 关系抽取, 语义平面, 实体偏差, 平面化句子表示

Abstract: Relation extraction aims to identify the relationships between named entities within a sentence. The context determines the true relationships between these named entities. Therefore, researchers expect models to correctly recognize the semantic relationships of entities as reflected in the context. However, existing relation extraction models largely tend to memorize patterns of entity names, that is, they infer relationships by learning and matching specific combinations of entity names rather than making relational judgments based on contextual information. This neglect of contextual information may lead to limited predictive performance when models encounter complex contexts, ambiguous entities, or rare relational expressions, failing to achieve high accuracy and strong generalization under ideal conditions. To address this issue, this paper transforms input text into an abstract semantic plane and directly performs relation judgments based on the information from the entire semantic plane, thereby forcing the model to consider contextual information when predicting relationships between entities. Experiments demonstrate that this method surpasses previous related studies by 1.9, 1.03, and 0.39 percentage points in F1 scores on three datasets: Chinese literary text corpus, ACE05 English, and SemEval-2010 Task-8, respectively, effectively enhancing the model‘s utilization of contextual information and its understanding depth of entity relationships in complex texts.

Key words: relation extraction, semantic plane, entity bias, planarized sentence representation