[1] ZHONG Z X, CHEN D Q. A frustratingly easy approach for entity and relation extraction[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2021: 50-61.
[2] 李雅杰, 唐国根, 李平. DPMN: 面向重叠关系抽取问题的多任务学习网络[J]. 计算机工程与应用, 2024, 60(20): 160-167.
LI Y J, TANG G G, LI P. DPMN: multi-task learning network for problem of overlapping relation extraction[J]. Computer Engineering and Applications, 2024, 60(20): 160-167.
[3] WANG H, CHEN Y P, YANG W Z, et al. A two dimensional feature engineering method for relation extraction[J]. arXiv:2404.04959, 2024.
[4] REN L, LIU Y B, CAO Y X, et al. CoVariance-based causal debiasing for entity and relation extraction[C]//Findings of the Association for Computational Linguistics: EMNLP 2023. Stroudsburg: ACL, 2023: 2627-2640.
[5] WANG Y W, CHEN M H, ZHOU W X, et al. Should we rely on entity mentions for relation extraction? Debiasing relation extraction with counterfactual analysis[C]//Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2022: 3071-3081.
[6] GENG R S, CHEN Y P, HUANG R Z, et al. Planarized sentence representation for nested named entity recognition[J]. Information Processing & Management, 2023, 60(4): 103352.
[7] WANG J B, LUO W Q, YAN X W, et al. A relation extraction model for enhancing subject features and relational attention[C]//Proceedings of the 20th International Conference on Web Information Systems and Applications. Singapore: Springer, 2023: 259-270.
[8] NGUYEN T H, GRISHMAN R. Relation extraction: perspective from convolutional neural networks[C]//Proceedings of the 1st Workshop on Vector Space Modeling for Natural Language Processing. Stroudsburg: ACL, 2015: 39-48.
[9] ZHANG Y H, ZHONG V, CHEN D Q, et al. Position-aware attention and supervised data improve slot filling[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2017: 35-45.
[10] CHEN Y P, YANG W Z, WANG K, et al. A neuralized feature engineering method for entity relation extraction[J]. Neural Networks, 2021, 141: 249-260.
[11] TIAN Y H, CHEN G M, SONG Y, et al. Dependency-driven relation extraction with attentive graph convolutional networks[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2021: 4458-4471.
[12] CHEN G M, TIAN Y H, SONG Y, et al. Relation extraction with type-aware map memories of word dependencies[C]// Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg: ACL, 2021: 2501-2512.
[13] ZHOU W X, CHEN M H. An improved baseline for sentence-level relation extraction[C]//Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2022: 161-168.
[14] HUANG J Y, LI B Z, XU J S, et al. Unified semantic typing with meaningful label inference[C]//Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2022: 2642-2654.
[15] QIN H, TIAN Y H, SONG Y. Relation extraction with word graphs from N-grams[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2021: 2860-2868.
[16] QIN H, TIAN Y, SONG Y. Enhancing relation extraction via adversarial multi-task learning[C]//Proceedings of the 13th Language Resources and Evaluation Conference, 2022: 6190-6199.
[17] WANG Y W, HOOI B, WANG F, et al. How fragile is relation extraction under entity replacements?[C]//Proceedings of the 27th Conference on Computational Natural Language Learning. Stroudsburg: ACL, 2023: 414-423.
[18] XU J J, WEN J, SUN X, et al. A discourse-level named entity recognition and relation extraction dataset for Chinese literature text[J]. arXiv:1711.07010, 2017.
[19] QIN Y B, YANG W Z, WANG K, et al. Entity relation extraction based on entity indicators[J]. Symmetry, 2021, 13(4): 539.
[20] TIAN Y H, SONG Y, XIA F. Improving relation extraction through syntax-induced pre-training with dependency masking[C]//Findings of the Association for Computational Linguistics: ACL 2022. Stroudsburg: ACL, 2022: 1875-1886.
[21] LI B, YU D Y, YE W, et al. Sequence generation with label augmentation for relation extraction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(11): 13043-13050.
[22] ZHANG D H, LIU Z Y, JIA W Q, et al. Dual attention graph convolutional network for relation extraction[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(2): 530-543.
[23] HENDRICKX I, KIM S N, KOZAREVA Z, et al. SemEval-2010 task 8: multi-way classification of semantic relations between pairs of nominals[J]. arXiv:1911.10422, 2019.
[24] SOCHER R, PENNINGTON J, HUANG E H, et al. Semi-supervised recursive autoencoders for predicting sentiment distributions[C]//Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2011: 151-161.
[25] ZENG D, LIU K, LAI S, et al. Relation classification via convolutional deep neural network[C]//Proceedings of the 25th International Conference on Computational Linguistics: Technical Papers, 2014: 2335-2344.
[26] DOS SANTOS C, XIANG B, ZHOU B W. Classifying relations by ranking with convolutional neural networks[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2015: 626-634.
[27] XU Y, MOU L L, LI G, et al. Classifying relations via long short term memory networks along shortest dependency paths[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2015: 1785-1794.
[28] LIU Y, WEI F R, LI S J, et al. A dependency-based neural network for relation classification[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2015: 285-290.
[29] CAI R, ZHANG X D, WANG H F. Bidirectional recurrent convolutional neural network for relation classification[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2016: 756-765.
[30] WEN J, SUN X, REN X C, et al. Structure regularized neural network for entity relation classification for Chinese literature text[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2018: 365-370.
[31] CHEN Y P, ZHONG X Y, LIU Y J, et al. A deep penetration network for sentence classification[J]. Information Fusion, 2023, 95: 174-185.
[32] 魏超, 陈艳平, 王凯, 等. 基于掩码提示与门控记忆网络校准的关系抽取方法[J]. 计算机应用, 2024, 44(6): 1713-1719.
WEI C, CHEN Y P, WANG K, et al. Relation extraction method based on mask prompt and gated memory network calibration[J]. Journal of Computer Applications, 2024, 44(6): 1713-1719.
[33] LU Y J, LIU Q, DAI D, et al. Unified structure generation for universal information extraction[J]. arXiv:2203.12277, 2022.
[34] CHEN Y P, ZHENG Q H, CHEN P. A set space model for feature calculus[J]. IEEE Intelligent Systems, 2017, 32(5): 36-42.
[35] XU J L, CHEN Y P, QIN Y B, et al. A feature combination-based graph convolutional neural network model for relation extraction[J]. Symmetry, 2021, 13(8): 1458.
[36] XU J L, CHEN Y P, QIN Y B, et al. A learnable graph convolutional neural network model for relation extraction[C]//Proceedings of the 28th China Conference on Information Retrieval. Cham: Springer, 2022: 90-104.
[37] WU S C, HE Y F. Enriching pre-trained language model with entity information for relation classification[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: ACM, 2019: 2361-2364.
[38] BALDINI SOARES L, FITZGERALD N, LING J, et al. Matching the blanks: distributional similarity for relation learning[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 2895-2905.
[39] TIAN Y H, SONG Y. Combinatory grammar tells underlying relevance among entities[C]//Findings of the Association for Computational Linguistics: EMNLP 2022. Stroudsburg: ACL, 2022: 5780-5786. |