[1] WEN W P, ZHANG C Y, ZHAI C H. Rapid seismic response prediction of RC frames based on deep learning and limited building information[J]. Engineering Structures, 2022, 267: 114638.
[2] BEHMANESH I, YOUSEFIANMOGHADAM S, NOZARI A, et al. Uncertainty quantification and propagation in dynamic models using ambient vibration measurements, application to a 10-story building[J]. Mechanical Systems and Signal Processing, 2018, 107: 502-514.
[3] CELIK O C, ELLINGWOOD B R. Seismic fragilities for non-ductile reinforced concrete frames-Role of aleatoric and epistemic uncertainties[J]. Structural Safety, 2010, 32(1): 1-12.
[4] VAMVATSIKOS D, FRAGIADAKIS M. Incremental dynamic analysis for estimating seismic performance sensitivity and uncertainty[J]. Earthquake Engineering & Structural Dynamics, 2010, 39(2): 141-163.
[5] YIN Y J, LI Y. Seismic collapse risk of light-frame wood construction considering aleatoric and epistemic uncertainties[J]. Structural Safety, 2010, 32(4): 250-261.
[6] DE LAUTOUR O R, OMENZETTER P. Prediction of seismic-induced structural damage using artificial neural networks[J]. Engineering Structures, 2009, 31(2): 600-606.
[7] 赵煜东, 许卫晓, 于德湖, 等. 基于人工神经网络的RC框架结构地震响应预测方法[J]. 地震研究, 2024, 47(1): 123-134.
ZHAO Y D, XU W X, YU D H, et al. Response prediction method of the RC frame structure based on the artificial neural network[J]. Journal of Seismological Research, 2024, 47(1): 123-134.
[8] NGUYEN H D, DAO N D, SHIN M. Prediction of seismic drift responses of planar steel moment frames using artificial neural network and extreme gradient boosting[J]. Engineering Structures, 2021, 242: 112518.
[9] MENON U A, NAIR D S. Seismic response prediction of RC buildings using artificial neural network[C]//Proceedings of SECON2022: Structural Engineering and Construction Management. Cham: Springer, 2022: 403-413.
[10] HWANG S H, MANGALATHU S, SHIN J, et al. Machine learning-based approaches for seismic demand and collapse of ductile reinforced concrete building frames[J]. Journal of Building Engineering, 2021, 34: 101905.
[11] KIM T, SONG J, KWON O S. Probabilistic evaluation of seismic responses using deep learning method[J]. Structural Safety, 2020, 84: 101913.
[12] OH B K, GLISIC B, PARK S W, et al. Neural network-based seismic response prediction model for building structures using artificial earthquakes[J]. Journal of Sound and Vibration, 2020, 468: 115109.
[13] XU Y J, LU X Z, CETINER B, et al. Real-time regional seismic damage assessment framework based on long short-term memory neural network[J]. Computer-Aided Civil and Infrastructure Engineering, 2021, 36(4): 504-521.
[14] LIN K Y, LIN T K, LIN Y. Real-time seismic structural response prediction system based on support vector machine[J]. Earthquakes and Structures, 2020, 18(2): 163-170.
[15] ZHANG X Y, CHEN J, WU Y, et al. Predicting the maximum seismic response of the soil-pile-superstructure system using random forests[J]. Journal of Earthquake Engineering, 2022, 26(15): 8120-8141.
[16] CHOU J S, NGO N T, PHAM A D. Shear strength prediction in reinforced concrete deep beams using nature-inspired metaheuristic support vector regression[J]. Journal of Computing in Civil Engineering, 2016, 30(1): 04015002.
[17] MORFIDIS K, KOSTINAKIS K. Rapid prediction of seismic incident angle??s influence on the damage level of RC buildings using artificial neural networks[J]. Applied Sciences, 2022, 12(3): 1055.
[18] ZHANG R Y, CHEN Z, CHEN S, et al. Deep long short-term memory networks for nonlinear structural seismic response prediction[J]. Computers & Structures, 2019, 220: 55-68.
[19] OH B K, PARK Y, PARK H S. Seismic response prediction method for building structures using convolutional neural network[J]. Structural Control and Health Monitoring, 2020, 27(5): e2519.
[20] TORKY A A, OHNO S. Deep learning techniques for predicting nonlinear multi-component seismic responses of structural buildings[J]. Computers & Structures, 2021, 252: 106570.
[21] ZAMANI A A, ETEDALI S. Seismic response prediction of open-and closed-loop structural control systems using a multi-state-dependent parameter estimation approach[J]. International Journal of Computational Methods, 2022, 19(5): 2250006.
[22] PEREZ-RAMIREZ C A, AMEZQUITA-SANCHEZ J P, VALTIERRA-RODRIGUEZ M, et al. Recurrent neural network model with Bayesian training and mutual information for response prediction of large buildings[J]. Engineering Structures, 2019, 178: 603-615.
[23] LI T, PAN Y X, TONG K T, et al. A multi-scale attention neural network for sensor location selection and nonlinear structural seismic response prediction[J]. Computers & Structures, 2021, 248: 106507.
[24] XU Z K, CHEN J, SHEN J X, et al. Recursive long short-term memory network for predicting nonlinear structural seismic response[J]. Engineering Structures, 2022, 250: 113406.
[25] 许泽坤, 陈隽. 非线性结构地震响应的神经网络算法[J]. 工程力学, 2021, 38(9): 133-145.
XU Z K, CHEN J. Neural network algorithm for nonlinear structural seismic response[J]. Engineering Mechanics, 2021, 38(9): 133-145.
[26] MENG C Z, SEO S, CAO D F, et al. When physics meets machine learning: a survey of physics-informed machine learning[J]. arXiv:2203.16797, 2022.
[27] HAO Z K, LIU S M, ZHANG Y C, et al. Physics-informed machine learning: a survey on problems, methods and applications[J]. arXiv:2211.08064, 2022.
[28] KARNIADAKIS G E, KEVREKIDIS I G, LU L, et al. Physics-informed machine learning[J]. Nature Reviews Physics, 2021, 3(6): 422-440.
[29] XUE H, SALIM F D. PromptCast: a new prompt-based learning paradigm for time series forecasting[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(11): 6851-6864.
[30] SUN C X, LI H Y, LI Y L, et al. TEST: text prototype aligned embedding to activate LLM??s ability for time series[J]. arXiv:2308.08241, 2023.
[31] ZHOU T, NIU P, SUN L, et al. One fits all: power general time series analysis by pretrained LM[C]//Advances in Neural Information Processing Systems 36, 2023: 43322-43355.
[32] CHANG C, PENG W C, CHEN T F. LLM4TS: two-stage fine-tuning for time-series forecasting with pre-trained LLMs[J] arXiv:2308.08469, 2023.
[33] LESTER B, AL-RFOU R, CONSTANT N, et al. The power of scale for parameter-efficient prompt tuning[J]. arXiv:2104.08691, 2021.
[34] LI X L, LIANG P. Prefix-tuning: optimizing continuous prompts for generation[J]. arXiv:2101.00190, 2021.
[35] LI L H, ZHANG P C, ZHANG H T, et al. Grounded language-image pre-training[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 10955-10965.
[36] ZHANG H, ZHANG P, HU X, et al. GLIPv2: unifying localization and vision-language understanding[C]//Advances in Neural Information Processing Systems 35, 2022: 36067-36080.
[37] RADFORD A, KIM J W, HALLACY C, et al. Learning transferable visual models from natural language supervision[C]//Proceedings of the 38th International Conference on Machine Learning, 2021: 8748-8763.
[38] WANG Z F, ZHANG Z Z, LEE C Y, et al. Learning to prompt for continual learning[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 139-149.
[39] WANG Z F, ZHANG Z Z, EBRAHIMI S, et al. DualPrompt: complementary prompting for rehearsal-free continual learning[C]//Proceedings of the 17th European Conference on Computer Vision. Cham: Springer, 2022: 631-648.
[40] RADFORD A, WU J, CHILD R, et al. Language models are unsupervised multitask learners[J]. OpenAI Blog, 2019, 1(8): 9.
[41] ZHANG R Y, LIU Y, SUN H. Physics-guided convolutional neural network (PhyCNN) for data-driven seismic response modeling[J]. Engineering Structures, 2020, 215: 110704.
[42] ZHANG R Y, LIU Y, SUN H. Physics-informed multi-LSTM networks for metamodeling of nonlinear structures[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 369: 113226.
[43] ZENG A L, CHEN M X, ZHANG L, et al. Are transformers effective for time series forecasting?[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(9): 11121-11128.
[44] ZHOU T, MA Z, WEN Q, et al. FILM: frequency improved Legendre memory model for long-term time series forecasting[C]//Advances in Neural Information Processing Systems, 2022: 12677-12690.
[45] YI K, ZHANG Q, FAN W, et al. Frequency-domain MLPs are more effective learners in time series forecasting[C]//Advances in Neural Information Processing Systems 36, 2024.
[46] LIU Y, HU T G, ZHANG H R, et al. iTransformer: inverted transformers are effective for time series forecasting[J]. arXiv:2310.06625, 2023.
[47] NIE Y Q, NGUYEN N H, SINTHONG P, et al. A time series is worth 64 words: long-term forecasting with transformers[J]. arXiv:2211.14730, 2022.
[48] WOO G, LIU C H, SAHOO D, et al. ETSformer: exponential smoothing transformers for time-series forecasting[J]. arXiv:2202.01381, 2022.
[49] ZHOU T, MA Z Q, WEN Q S, et al. FEDformer: frequency enhanced decomposed transformer for long-term series forecasting[C]//Proceedings of the 39th International Conference on Machine Learning, 2022: 27268-27286. |