计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (14): 185-194.DOI: 10.3778/j.issn.1002-8331.2405-0073

• 模式识别与人工智能 • 上一篇    下一篇

方面情感三元组抽取的提示增强学习网络

李丹,夏鸿斌,刘渊   

  1. 1.江南大学 人工智能与计算机学院,江苏 无锡 214122
    2.江南大学 人机融合软件与媒体技术省高校重点实验室,江苏 无锡 214122
  • 出版日期:2025-07-15 发布日期:2025-07-15

Prompt-Enhanced Learning Network for Aspect Sentiment Triplet Extraction

LI Dan, XIA Hongbin, LIU Yuan   

  1. 1.School of Artificial Intelligence and Computer, Jiangnan University, Wuxi, Jiangsu 214122, China
    2.Jiangsu Key University Laboratory of Software and Media Technology under Human-Computer Cooperation, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Online:2025-07-15 Published:2025-07-15

摘要: 方面情感三元组抽取在最新的研究中致力于使用边界驱动的表格填充范式,然而其在预训练中学习到的表格特征和下游设计的解码方式之间缺乏语义交互,导致表格特征需要经历频繁的语义修改以适应任务目标。为了解决这个问题,提出一个提示增强的学习网络(prompt-enhanced learning network for aspect sentiment triplet extraction,PENet)进行方面情感三元组抽取。针对下游边界驱动的解码任务构造了新颖的边界标签提示,在上游特征学习中设计了相匹配的多粒度注意力卷积模块和提示改进的变压器结构,分别稳定地学习改进后文本的语义特征及在不同情感极性下面向任务的学习提示表示,同时基于提示不断调整文本特征的学习方向,最终实现提示范式引导下的三元组抽取网络,解决了解码前特征反复修改的问题。实验结果表明,在四个公开数据集上,PENet的综合表现已经超越了现有基线模型,显著提升了三元组抽取性能。

关键词: 方面情感三元组抽取, 提示学习, 注意力卷积

Abstract: Aspect sentiment triplet extraction in recent research is dedicated to using a boundary-driven table-filling paradigm, however, it lacks semantic interactions between the table features learned in pre-training and the decoding methods designed downstream, resulting in the need for the table features to undergo frequent semantic modifications to adapt to the task goals. To address this problem, a prompt-enhanced learning network (PENet) is proposed for aspect sentiment triplet extraction. A novel boundary label prompt is constructed for the downstream boundary-driven decoding task, and compatible multi-granularity attention convolution module and prompt-enhanced transformer structure are designed in the upstream feature learning, respectively, to stably learn the semantic features of improved text and acquire prompt representations under different sentiment polarities in the downstream task. Meanwhile, the learning direction of the text features is continuously adjusted base on the prompts. And the triplet extraction network under the guidance of the prompting paradigm is achieved, which solves the problem of repeated modification of the features before decoding. The experimental results show that the comprehensive performance of PENet has outperformed the existing baseline models on the four public datasets, significantly improving the triplet extraction performance.

Key words: aspect sentiment triplet extraction, prompt learning, attention convolution