[1] SABERI B, SAAD S. Sentiment analysis or opinion mining: a review[J]. International Journal on Advanced Science, Engineering and Information Technology, 2017, 7(5): 1660-1666.
[2] CHEN Z, QIAN T Y. Enhancing aspect term extraction with soft prototypes[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 2107-2117.
[3] WU Z, ZHAO F, DAI X Y, et al. Latent opinions transfer network for target-oriented opinion words extraction[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 9298-9305.
[4] SHARMA T, KAUR K. Aspect sentiment classification using syntactic neighbour based attention network[J]. Journal of King Saud University-Computer and Information Sciences, 2023, 35(2): 612-625.
[5] GAO L, WANG Y L, LIU T C, et al. Question-driven span labeling model for aspect-opinion pair extraction[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 12875-12883.
[6] PENG H Y, XU L, BING L D, et al. Knowing what, how and why: a near complete solution for aspect-based sentiment analysis[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 8600-8607.
[7] XU L, LI H, LU W, et al. Position-aware tagging for aspect sentiment triplet extraction[J]. arXiv:2010.02609, 2020.
[8] WU Z, YING C, ZHAO F, et al. Grid tagging scheme for aspect-oriented fine-grained opinion extraction[J]. arXiv:2010.04640, 2020.
[9] XU L, CHIA Y K, BING L. Learning span-level interactions for aspect sentiment triplet extraction[J]. arXiv:2107.12214, 2021.
[10] YIN Y, WANG C, ZHANG M. PoD: positional dependency-based word embedding for aspect term extraction[J]. arXiv:1911.03785, 2019.
[11] CHEN S W, WANG Y, LIU J, et al. Bidirectional machine reading comprehension for aspect sentiment triplet extraction[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 12666-12674.
[12] YAN H, DAI J Q, JI T, et al. A unified generative framework for aspect?based sentiment analysis[J]. arXiv:2106. 04300, 2021.
[13] ZHANG Y C, YANG Y F, LI Y H, et al. Boundary-driven table-filling for aspect sentiment triplet extraction[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2022: 6485-6498.
[14] BROWN T, MANN B, RYDER N, et al. Language models are few-shot learners[C]//Advances in Neural Information Processing Systems, 2020: 1877-1901.
[15] WANG X L, ZHOU K, WEN J R, et al. Towards unified conversational recommender systems via knowledge-enhanced prompt learning[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2022: 1929-1937.
[16] HAN C, WANG Q, CUI Y, et al. E^2VPT: an effective and efficient approach for visual prompt tuning[J]. arXiv:2307. 13770, 2023.
[17] WU H, SHI X D. Adversarial soft prompt tuning for cross-domain sentiment analysis[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2022: 2438-2447.
[18] LI C, GAO F, BU J, et al. SentiPrompt: sentiment knowledge enhanced prompt-tuning for aspect-based sentiment analysis[J]. arXiv:2109.08306, 2021.
[19] CHEN Z, HUANG H, LI B, et al. Semantic and syntactic enhanced aspect sentiment triplet extraction[J]. arXiv:2106. 03315, 2021.
[20] KIPF T, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv:1609.02907, 2016.
[21] CHEN H, ZHAI Z P, FENG F X, et al. Enhanced multi-channel graph convolutional network for aspect sentiment triplet extraction[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics.Stroudsburg: ACL, 2022: 2974-2985.
[22] YANG S H, ZHANG T X, XU H F, et al. Improving aspect sentiment triplet extraction with perturbed masking and edge-enhanced sentiment graph attention network[C]//Proceedings of the International Joint Conference on Neural Networks. Piscataway: IEEE, 2023: 1-8.
[23] PING Z C, SANG G M, LIU Z, et al. Aspect category sentiment analysis based on prompt-based learning with attention mechanism[J]. Neurocomputing, 2024, 565: 126994.
[24] MOVAHEDI S, GHADERY E, FAILI H, et al. Aspect category detection via topic-attention network[J]. arXiv:1901. 01183, 2019.
[25] HE Y, HUANG X Y, ZOU S H, et al. PSAN: prompt semantic augmented network for aspect-based sentiment analysis[J]. Expert Systems with Applications, 2024, 238: 121632.
[26] PENG K, JIANG L, PENG H, et al. Prompt based tri-channel graph convolution neural network for aspect sentiment triplet extraction[C]//Proceedings of the SIAM International Conference on Data Mining, 2024: 145-153.
[27] SHI X F, HU M, REN F J, et al. Prompted representation joint contrastive learning for aspect-based sentiment analysis[J]. Knowledge-Based Systems, 2024, 285: 111345.
[28] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[J]. arXiv:1810.04805, 2018.
[29] XU Q F, WEI Y W, YUAN S Z, et al. Learning emotional prompt features with multiple views for visual emotion analysis[J]. Information Fusion, 2024, 108: 102366.
[30] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[31] PONTIKI M, GALANIS D, PAPAGEORGIOU H, et al. SemEval-2016 task 5: aspect based sentiment analysis[C]//Proceedings of the 10th International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2016: 19-30.
[32] LI Y, HE Q, ZHANG D. Dual graph convolutional networks integrating affective knowledge and position information for aspect sentiment triplet extraction[J]. Front Neurorobot, 2023, 17: 1193011.
[33] YUAN L, WANG J, YU L C, et al. Encoding syntactic information into transformers for aspect-based sentiment triplet extraction[J]. IEEE Transactions on Affective Computing, 2024, 15(2): 722-735.
[34] WANG L, ZHENG Y, TANG M, et al. Multi-task dual-graph network framework for aspect sentiment triplet extraction[J]. IEEE Access,2022,10:103187-103199. |