计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (13): 208-216.DOI: 10.3778/j.issn.1002-8331.2403-0274

• 模式识别与人工智能 • 上一篇    下一篇

细粒度标记的结点自适应方面情感三元组抽取

赵园春,韩虎,徐学锋   

  1. 1.兰州交通大学 电子与信息工程学院,兰州 730070 
    2.兰州交通大学 甘肃省人工智能与图形图像处理工程研究中心,兰州 730070
  • 出版日期:2025-07-01 发布日期:2025-06-30

Fine-Grained Labeled Node-Adaptive Aspect-Sentiment Triple Extraction

ZHAO Yuanchun, HAN Hu, XU Xuefeng   

  1. 1.School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
    2.Gansu Engineering Research Center of Artificial Intelligence and Graphics and Image Processing, Lanzhou Jiaotong University, Lanzhou 730070, China
  • Online:2025-07-01 Published:2025-06-30

摘要: 情感分析在自然语言处理领域扮演着重要的角色,作为情感分析的子任务,方面情感三元组抽取能够从评论中抽取用户对产品或服务的意见,从而在商家做决策时提供关键性数据支撑,因此具有较大的研究价值。然而现有的方面情感三元组抽取方法存在词对边界考虑不足、词对标记冗余和语言学特征利用有限的问题。为了解决这些问题,提出了一种基于细粒度标记的结点自适应方面情感三元组抽取算法。设计细粒度词对标记方案,项的首尾边界使用相异的标记,去除项中冗余的词间标记。在两个通道上使用结点自适应网络分别对句法依赖信息与句法类型信息进行挖掘,同时使用卷积注意力捕捉评论文本的全局与局部语义依赖关系,从而增强模型对语言学特征的提取。最后,使用推理层获取词间关系,使用解码层获取方面-意见-情感三元组。实验结果表明,该模型不仅解决了现有标记方案存在的问题,还能高效挖掘语言学特征,在4个公开数据集上其综合评级指标值取得了较优的结果。

关键词: 方面情感三元组抽取, 细粒度词对标记, 结点自适应网络, 句法依赖树, 卷积注意力

Abstract: Sentiment analysis plays an important role in the field of natural language processing. As a sub-task of sentiment analysis, aspect sentiment triplet extraction can extract users’ opinions on products or services from reviews, thus providing key data support for merchants to make decisions, so it has great research value. However, there are some problems such as insufficient consideration of word pair boundary, redundant word pair labels and limited utilization of linguistic character. In order to solve these problems, an aspect sentiment triple extraction model based on fine-grained labeling and node adaptive network is proposed. Firstly, a fine-grained word pair labeling scheme is designed, where different labels are used at the head and tail boundaries of items and redundant inter-word labels in items are removed. Secondly, the node adaptive network is used to mine the syntactic dependency information and syntactic type information on the two channels respectively, and the convolutional attention is used to capture the global and local semantic dependencies of the comment text, so as to enhance the extraction of linguistic features of the model. Finally, an inference layer is used to obtain inter-word relations and a decoding layer is used to obtain aspect-opinion-sentiment triples. Experimental results show that the model not only solves the problems existing in the existing labeling schemes, but also efficiently explores linguistic features, and its comprehensive rating index value achieves better results on four public datasets.

Key words: aspect sentiment triple extraction, fine-grained word pair labeling, node adaptive network, syntactic dependency tree, convolutional attention