[1] 陈壮, 钱铁云, 李万理, 等. 低资源方面级情感分析研究综述[J]. 计算机学报, 2023, 46(7): 1445-1472.
CHEN Z, QIAN T Y, LI W L, et al. Low-resource aspect-based sentiment analysis: a survey[J]. Chinese Journal of Computers, 2023, 46(7): 1445-1472.
[2] PENG H Y, XU L, BING L D, et al. Knowing what, how and why: a near complete solution for aspect-based sentiment analysis[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(5): 8600-8607.
[3] ZHANG W X, LI X, DENG Y, et al. Towards generative aspect-based sentiment analysis[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2021: 504-510.
[4] YAN H, DAI J Q, JI T, et al. A unified generative framework for aspect-based sentiment analysis[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2021: 2416-2429.
[5] LU Y J, LIU Q, DAI D, et al. Unified structure generation for universal information extraction[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2022: 5755-5772.
[6] MAO Y, SHEN Y, YU C, et al. A joint training dual-MRC framework for aspect based sentiment analysis[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(15): 13543-13551.
[7] CHEN S W, WANG Y, LIU J, et al. Bidirectional machine reading comprehension for aspect sentiment triplet extraction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(14): 12666-12674.
[8] ZHAI Z P, CHEN H, FENG F X, et al. COM-MRC: a context-masked machine reading comprehension framework for aspect sentiment triplet extraction[C]//Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2022: 3230-3241.
[9] XU L, CHIA Y K, BING L D. Learning span-level interactions for aspect sentiment triplet extraction[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2021: 4755-4766.
[10] LIANG S, WEI W, MAO X L, et al. STAGE: span tagging and greedy inference scheme for aspect sentiment triplet extraction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(11): 13174-13182.
[11] YU G X, LIU L M, JIANG H Y, et al. Making better use of training corpus: retrieval-based aspect sentiment triplet extraction via label interpolation[C]//Findings of the Association for Computational Linguistic. Stroudsburg: ACL, 2023: 4914-4927.
[12] XING Y, ZHU Y X, FAN W, et al. SpanMTL: a span-based multi-table labeling for aspect-oriented fine-grained opinion extraction[J]. Soft Computing, 2023, 27(8): 4627-4637.
[13] WU Z, YING C C, ZHAO F, et al. Grid tagging scheme for aspect-oriented fine-grained opinion extraction[C]//Findings of the Association for Computational Linguistics: EMNLP 2020. Stroudsburg: ACL, 2020: 2576-2585.
[14] LIU N, HU J, YAO S Y, et al. IDCN: a novel interactive dual channel network for aspect sentiment triplet extraction[J]. IEEE Access, 2022, 10: 116453-116466.
[15] CHEN Z X, HUANG H, LIU B, et al. Semantic and syntactic enhanced aspect sentiment triplet extraction[C]//Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg: ACL, 2021: 1474-1483.
[16] LI Y B, HE Q, ZHANG D M. Dual graph convolutional networks integrating affective knowledge and position information for aspect sentiment triplet extraction[J]. Frontiers in Neurorobotics, 2023, 17: 1193011.
[17] CHEN H, ZHAI Z P, FENG F X, et al. Enhanced multi-channel graph convolutional network for aspect sentiment triplet extraction[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2022: 2974-2985.
[18] SHI X F, HU M, DENG J W, et al. Integration of multi-branch GCNs enhancing aspect sentiment triplet extraction[J]. Applied Sciences, 2023, 13(7): 4345.
[19] YUAN L, WANG J, YU L C, et al. Encoding syntactic information into transformers for aspect-based sentiment triplet extraction[J]. IEEE Transactions on Affective Computing, 2024, 15(2): 722-735.
[20] ZHANG W T, SHENG Z A, YANG M Y, et al. NAFS: a simple yet tough-to-beat baseline for graph representation learning[C]//Proceedings of the 39th International Conference on Machine Learning, 2022: 26467-26483.
[21] JIANG Z H, YU W H, ZHOU D Q, et al. ConvBERT: improving BERT with span-based dynamic convolution[C]//Advances in Neural Information Processing Systems, 2020: 12837-12848.
[22] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 17th Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2019: 4171-4186.
[23] 车万翔, 窦志成, 冯岩松, 等. 大模型时代的自然语言处理: 挑战、机遇与发展[J]. 中国科学: 信息科学, 2023, 53(9): 1645-1687.
CHE W X, DOU Z C, FENG Y S, et al. Towards a comprehensive understanding of the impact of large language models on natural language processing: challenges, opportunities and future directions[J]. Scientia Sinica (Informationis), 2023, 53(9): 1645-1687.
[24] PONTIKI M, GALANIS D, PAVLOPOULOS J, et al. SemEval-2014 task 4: aspect based sentiment analysis[C]//Proceedings of the 8th International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2014: 27-35.
[25] PONTIKI M, GALANIS D, PAPAGEORGIOU H, et al. SemEval-2015 task 12: aspect based sentiment analysis[C]//Proceedings of the 9th International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2015: 486-495.
[26] PONTIKI M, GALANIS D, PAPAGEORGIOU H, et al. SemEval-2016 task 5: aspect based sentiment analysis[C]//Proceedings of the 10th International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2016: 318-324.
[27] XU L, LI H, LU W, et al. Position-aware tagging for aspect sentiment triplet extraction[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 2339-2349.
[28] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]//Proceedings of the 5th International Conference on Learning Representations, 2017. |