[1] 史博轩, 林绅文, 毛洪亮. 基于网络流量的挖矿行为检测识别技术研究[J]. 计算机应用研究, 2022, 39(7): 1956-1960.
SHI B X, LIN S W, MAO H L. Research on mining behavior detection and identification technology based on network traffic[J]. Application Research of Computers, 2022, 39(7): 1956-1960.
[2] 董希淼. 加强虚拟货币的整治与监管[J]. 中国金融, 2021(11): 82-83.
DONG X M. Strengthen the rectification and supervision of virtual currency[J]. China Finance, 2021(11): 82-83.
[3] 周婧莹, 黎宇, 黄坤, 等. 基于DNS流量分析识别加密货币矿工的研究和实现[J]. 邮电设计技术, 2023(8): 48-52.
ZHOU J Y, LI Y, HUANG K, et al. Research and implementation of cryptocurrency miner detection based on DNS traffic analysis[J]. Designing Techniques of Posts and Telecommunications, 2023(8): 48-52.
[4] 高见, 孙懿, 王润正, 等. 基于机器学习的浏览器挖矿检测模型研究[J]. 计算机工程与应用, 2021, 57(22): 125-130.
GAO J, SUN Y, WANG R Z, et al. Research on mining detection model of browser based on machine learning[J]. Computer Engineering and Applications, 2021, 57(22): 125-130.
[5] 黄子依, 秦玉海. 基于多特征识别的恶意挖矿网页检测及其取证研究[J]. 信息网络安全, 2021, 21(7): 87-94.
HUANG Z Y, QIN Y H. Malicious mining web page detection and forensics based on multi-feature recognition[J]. Netinfo Security, 2021, 21(7): 87-94.
[6] RAMESH G, KRISHNAMURTHI I, KUMAR K S S. An efficacious method for detecting phishing webpages through target domain identification[J]. Decision Support Systems, 2014, 61: 12-22.
[7] ZHANG Y, HONG J I, CRANOR L F. Cantina: a content-based approach to detecting phishing web sites[C]//Proceedings of the 16th International Conference on World Wide Web. New York: ACM, 2007: 639-648.
[8] KHONJI M, IRAQI Y, JONES A. Phishing detection: a literature survey[J]. IEEE Communications Surveys & Tutorials, 2013, 15(4): 2091-2121.
[9] SOMMER R, PAXSON V. Outside the closed world: on using machine learning for network intrusion detection[C]//Proceedings of the 2010 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2010: 305-316.
[10] RAUCHBERGER J, SCHRITTWIESER S, DAM T, et al. The other side of the coin: a framework for detecting and analyzing web-based cryptocurrency mining campaigns[C]//Proceedings of the 13th International Conference on Availability, Reliability and Security. New York: ACM, 2018: 1-10.
[11] 蒋万胜, 朱晓兰. 数字货币的能源消耗及其经济效益的比较性研究[J]. 西安财经大学学报, 2023, 36(1): 3-13.
JIANG W S, ZHU X L. Comparative analysis of the energy consumption and the economic benefits of digital research[J]. Journal of Xi’an University of Finance and Economics, 2023, 36(1): 3-13.
[12] 张宗刚, 支纯. 防范虚拟货币“挖矿” 业务风险[J]. 中国外汇, 2021(11): 68-69.
ZHANG Z G, ZHI C. Guard against the business risk of virtual currency “mining” [J]. China Forex, 2021(11): 68-69.
[13] 林虹萍. 与加密货币相关的网络信息安全风险及技术防范[J]. 警察技术, 2019(6): 49-52.
LIN H P. Network information security risks related to cryptocurrency and its technical prevention[J]. Police Technology, 2019(6): 49-52.
[14] 辛毅, 高泽霖, 黄伟强. 挖矿木马的检测与防护技术分析[J]. 网络空间安全, 2022, 13(1): 41-46.
XIN Y, GAO Z L, HUANG W Q. Detection and protection technological analysis of crypto-mining Trojan[J]. Cyberspace Security, 2022, 13(1): 41-46.
[15] MURAINA I. Ideal dataset splitting ratios in machine learning algorithms: general concerns for data scientists and data analysts[C]//Proceedings of the 7th International Mardin Artuklu Scientific Research Conference, 2022: 496-504.
[16] KOWSARI K, JAFARI MEIMANDI K, HEIDARYSAFA M, et al. Text classification algorithms: a survey[J]. Information, 2019, 10(4): 150.
[17] 李航. 统计学习方法[M]. 北京: 清华大学出版社, 2012.
LI H. Statistical learning method[M]. Beijing: Tsinghua University Press, 2012.
[18] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
ZHOU Z H. Machine learning[M]. Beijing: Tsinghua University Press, 2016.
[19] DAS K, BEHERA R N. A survey on machine learning: concept, algorithms and applications[J]. International Journal of Innovative Research in Computer and Communication Engineering, 2017, 5(2): 1301-1309.
[20] 于治平, 刘彩霞, 刘树新, 等. 基于机器学习的网络流量分类综述[J]. 信息工程大学学报, 2023, 24(4): 447-453.
YU Z P, LIU C X, LIU S X, et al. Overview of network traffic classification based on machine learning[J]. Journal of Information Engineering University, 2023, 24(4): 447-453.
[21] 徐宁, 冯志伟, 陈隆耀. 一种基于流量特征的加密挖矿行为检测识别方法[J]. 江西通信科技, 2023(1): 45-47.
XU N, FENG Z W, CHEN L Y. A detection and identification method of encrypted mining behavior based on traffic characteristics[J]. Jiangxi Communication Science & Technology, 2023(1): 45-47.
[22] ZHANG W, YOSHIDA T, TANG X J. A comparative study of TF*IDF, LSI and multi-words for text classification[J]. Expert Systems with Applications, 2011, 38(3): 2758-2765.
[23] 武永亮, 赵书良, 李长镜, 等. 基于TF-IDF和余弦相似度的文本分类方法[J]. 中文信息学报, 2017, 31(5): 138-145. WU Y L, ZHAO S L, LI C J, et al. Text classification method based on TF-IDF and cosine similarity[J]. Journal of Chinese Information Processing, 2017, 31(5): 138-145.
[24] QADER W A, AMEEN M M, AHMED B I. An overview of bag of words; importance, implementation, applications, and challenges[C]//Proceedings of the 2019 International Engineering Conference. Piscataway: IEEE, 2019: 200-204.
[25] VAJJALA S, BANERJEE S. A study of N-gram and embedding representations for native language identification[C]//Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications. Stroudsburg: ACL, 2017: 240-248.
[26] CHURCH K W. Word2Vec[J]. Natural Language Engineering, 2017, 23(1): 155-162.
[27] GOUTTE C, GAUSSIER E. A probabilistic interpretation of precision, recall and F-score, with implication for evaluation[C]//Advances in Information Retrieval. Berlin, Heidelberg: Springer, 2005: 345-359. |