[1] WANG Z Y, HUTTER F, ZOGHI M, et al. Bayesian optimization in a billion dimensions via random embeddings[J]. Journal of Artificial Intelligence Research, 2016, 55: 361-387.
[2] 孙路明, 张少敏, 姬涛, 等. 人工智能赋能的数据管理技术研究[J]. 软件学报, 2020, 31(3): 600-619.
SUN L M, ZHANG S M, JI T, et al. Survey of data management techniques powered by artificial intelligence[J]. Journal of Software, 2020, 31(3): 600-619.
[3] VAN AKEN D, PAVLO A, GORDON G J, et al.Automatic database management system tuning through large-scale machine learning[C]//Proceedings of the International Conference on Management of Data, 2017: 1009-1024.
[4] AKEN D V, YANG D, BRILLARD S, et al. An inquiry into machine learning-based automatic configuration tuning services on real-world database management systems[J].Proceedings of the VLDB Endowment, 2021, 14(7): 1241-1253.
[5] KUNJIR M, BABU S. Black or white? how to develop an autotuner for memory-based analytics[C]//Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, 2020: 1667-1683.
[6] ZHANG X, WU H, LI Y, et al.Towards dynamic and safe configuration tuning for cloud databases[C]//Proceedings of the 2022 International Conference on Management of Data, 2022: 631-645.
[7] CEREDA S, VALLADARES S, CREMONESI P, et al. CGPTuner: a contextual gaussian process bandit approach for the automatic tuning of IT configurations under varying workload conditions[J]. Proceedings of the VLDB Endowment, 2021, 14(8): 1401-1413.
[8] ZHANG X, WU H, CHANG Z, et al. ResTune: resource oriented tuning boosted by meta-learning for cloud databases[C]//Proceedings of the 2021 International Conference on Management of Data, 2021: 2102-2014.
[9] KANELLIS K, DING C, KROTH B, et al. LlamaTune: sample-efficient DBMS configuration tuning[J].Proceedings of the VLDB Endowment, 2022,15: 2953-2965.
[10] FEKRY A, CARATA L, PASQUIER T, et al.To tune or not to tune?: in search of optimal configurations for data analytics[C]//Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2020: 2494-2504.
[11] ZHANG J, LIU Y, ZHOU K, et al.An end-to-end automatic cloud database tuning system using deep reinforcement learning[C]//Proceedings of the 2019 International Conference, 2019: 415-432.
[12] CAI B, LIU Y, ZHANG C, et al. HUNTER: an online cloud database hybrid tuning system for personalized requirements[C]//Proceedings of the 2022 International Conference on Management of Data, 2022: 646-659.
[13] LI G L, ZHOU X H, LI S F, et al. QTune: a query-aware database tuning system with deep reinforcement learning[J].Proceedings of the VLDB Endowment, 2019, 12(12): 2118-2130.
[14] GE J, CHAI Y, CHAI Y. WATuning: a workload-aware tuning system with attention?based deep reinforcement learning[J]. Journal of Computer Science and Technology, 2021, 36(4): 741-761.
[15] ZHANG X, CHANG Z, LI Y, et al. Facilitating database tuning with hyper-parameter optimization[J]. Proceedings of the VLDB Endowment, 2022, 15(9): 1808-1821.
[16] 李国良, 周煊赫, 孙佶, 等.基于机器学习的数据库技术综述[J]. 计算机学报, 2020, 43(11): 2019-2049.
LI G L, ZHOU X H, SUN J, et al. A survey of machine learning based database techniques[J]. Chinese Journal of Computers, 2020, 43(11): 2019-2049.
[17] RENOUARD J M. MySQLTuner-perl[EB/OL].(2022-06-15)[2023-03-15].https://github.com/major/MySQLTuner-perl.
[18] WEI Z, DING Z, HU J. Self-tuning performance of database systems based on fuzzy rules[C]//Proceedings of the International Conference on Fuzzy Systems & Knowledge Discovery, 2014: 194-198.
[19] ZHU Y, LIU J, GUO M, et al. BestConfig: tapping the performance potential of systems via automatic configuration tuning[C]//Proceedings of the 2017 Symposium on Cloud Computing, 2017: 338-350.
[20] 陈镭. 基于机器学习的数据库系统自动调参研究[J]. 软件导刊, 2021, 20(11): 148-151.
CHEN L. Automatic database tuning research based on machine learning[J]. Software Guide, 2021, 20(11): 148-151.
[21] 孟小峰, 马超红, 杨晨. 机器学习化数据库系统研究综述[J]. 计算机研究与发展, 2019, 56(9): 1803-1820.
MENG X F, MA C H, YANG C. Survey on machine learning for database systems[J]. Journal of Computer Research and Development, 2019, 56(9): 1803-1820.
[22] VAN AKEN D, PAVLO A, ZHANG B H. OtterTune[EB/OL]. (2021)[2023-03-15]. https://OtterTune.cs.cmu.edu.
[23] TIBSHIRANI R. Regression shrinkage and selection via the Lasso[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1996, 58(1): 267-288.
[24] RASMUSSEN C E. Gaussian processes in machine learning[C]//Advanced Lectures on Machine Learning, ML Summer Schools, 2003: 63-71.
[25] VAN AKEN D, PAVLO A, ZHANG B H. OtterTune-automated database tuning service[EB/OL].(2021)[2023-03-15]. https://OtterTune.com.
[26] ZMORA N, JACOB G, ZLOTNIK L, et al. Neural network distiller: a python package for DNN compression research[J]. arXiv:1910.12232, 2019.
[27] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
[28] PLAPPERT M, HOUTHOOFT R, DHARIWAL P, et al.Parameter space noise for exploration[J]. arXiv:1706.01905, 2017.
[29] BOENDER C G E, MOCKUS J.Bayesian approach to global optimization—theory and applications[J].Mathematics of Computation, 1991, 56: 878-879.
[30] PAUL L T, JAMES H J, DAVID S, et al. Continuous control with deep reinforcement learning[C]//Proceedings of the CoRR, 2015.
[31] DALIBARD V, SCHAARSCHMIDT M, YONEKI E. BOAT: building auto-tuners with structured Bayesian optimization [C]//Proceedings of the 26th International Conference on World Wide Web, 2017: 479-488.
[32] HUTTER F. HOOS H H. LEYTON-BROWN K. Sequential model-based optimization for general algorithm configuration[C]//Proceedings of the International Conference on Learning and Intelligent Optimization, 2011: 507-523.
[33] ESTER M A Density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the International Conference on knowledg Discovery & Data Mining, 1996: 226-231.
[34] KRISHNAN A, DAS M, BENDRE M, et al. Transfer learning via contextual invariants for one-to-many crossdomain recommendation[C]//Proceedings of the SIGIR ACM, 2020: 1081-1090.
[35] KRAUSE A, ONG C.Contextual Gaussian process bandit optimization[C]//Advances in Neural Information Processing Systems, 2011: 2447-2455.
[36] ALIPOURFARD O, LIU H H, CHEN J, et al. CherryPick: adaptively unearthing the best cloud configurations for big data analytics[C]//Proceedings of the Networked Systems Design and Implementation, 2017: 469-482.
[37] BROCHU E, HOFFMAN M W, FREITAS N D. Portfolio allocation for Bayesian optimization[J]. UAI, 2010, 35(3): 841-845.
[38] DUAN S, THUMMALA V, BABU S. Tuning database configuration parameters with iTuned[J]. Proceedings of the VLDB Endowment, 2009, 2(1): 1246-1257.
[39] MALAVIYA A. Automated machine learning: methods, systems, challenges[J]. Computing Reviews, 2021(9): 62.
[40] WISTUBA M, SCHILLING N, SCHMIDT-THIEME L. Two-stage transfer surrogate model forautomatic hyperparameter optimization[C]//Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2016: 199-214.
[41] NAYEBI A, MUNTEANU A, POLOCZEK M.A framework for Bayesian optimization in embedded subspaces[C]//Proceedings of the International Conference on Machine Learning, 2019: 4752-4761.
[42] BORGONOVO E, PLISCHKE E. Sensitivity analysis: a review of recent advances[J]. European Journal of Operational Research, 2016, 248(3): 869-887.
[43] LIAW A, WIENER M. Classification and regression by random forest[J]. R News, 2002, 23: 18-22.
[44] Amazon EC2 instance pricing[EB/OL].(2018)[2023-03-15]. https://www.amazonaws.cn/en/ec2/pricing.
[45] KRISHNAN S P T, UGIA GONZALEZ J L. Building your next big thing with google cloud platform[M].CA: Apress Berkeley, 2015: 53-81.
[46] ZHANG J, ZHOU K, LI G, et al. CDBTune+: an efficient deep reinforcement learning-based automatic cloud database tuning system[J]. The VLDB Journal, 2021, 30(6): 959-987.
[47] VAN HASSELT H. Double Q-learning[C]//Proceedings of the 23rd International Conference on Neural Information Processing Systems, 2010: 2613-2621.
[48] GENG J K, LI D, WANG S. Accelerating distributed machine learning by smart parameter server[C]//Proceedings of the 3rd Asia-Pacific Workshop on Networking, 2019: 92-98.
[49] LI M, ANDERSEN D G, PARK J W, et al. Scaling distributed machine learning with the parameter server[C]//Proceedings of the 2014 International Conference on Big Data Science and Computing, 2014: 583-598.
[50] KORNACKER M, BEHM A, BITTORF V, et al. Impala: a modern, open-source SQL engine for hadoop[C]//Proceedings of the Conference on Innovative Data Systems Research, 2015: 1957-1968.
[51] 李国良, 周煊赫. 面向AI的数据管理技术综述[J]. 软件学报, 2021, 32(1): 21-40.
LI G L, ZHOU X H. Survey of data management techniques for artificial intelligence[J]. Journal of Software, 2021, 32(1): 21-40. |