
计算机工程与应用 ›› 2024, Vol. 60 ›› Issue (24): 79-96.DOI: 10.3778/j.issn.1002-8331.2405-0367
郑承蔚,王海凤,刘瑞
出版日期:2024-12-15
发布日期:2024-12-12
ZHENG Chengwei, WANG Haifeng, LIU Rui
Online:2024-12-15
Published:2024-12-12
摘要: 软件定义网络(SDN)的出现弥补了传统网络的不足并为网络管理带来技术革新。分布式拒绝服务(DDoS)攻击作为网络安全领域的主要威胁之一,严重影响着SDN这一新兴网络架构。随着SDN技术的部署及发展,如何在SDN中检测DDoS攻击成为当前研究领域的热点与难点。为了对相关研究工作进行合理综述,根据所使用的核心技术或理论的不同,将DDoS攻击检测方法划分为基于信息熵、基于机器学习、基于深度学习三大类。介绍SDN体系架构并分析SDN中的DDoS攻击,同时介绍一些常用的公开数据集和评估指标,从四个角度归纳和分析近年来相关研究人员提出的模型或算法,总结了SDN中的DDoS攻击检测研究领域的未来研究方向并进行展望,为该领域的相关研究人员提供研究思路。
郑承蔚, 王海凤, 刘瑞. SDN中DDoS攻击检测研究综述[J]. 计算机工程与应用, 2024, 60(24): 79-96.
ZHENG Chengwei, WANG Haifeng, LIU Rui. Review of Research on DDoS Attack Detection in SDN[J]. Computer Engineering and Applications, 2024, 60(24): 79-96.
| [1] MCKEOWN N, ANDERSON T, BALAKRISHNAN H, et al. OpenFlow: enabling innovation in campus networks[J]. ACM SIGCOMM Computer Communication Review, 2008, 38(2): 69-74. [2] HAN T, JAN S R U, TAN Z, et al. A comprehensive survey of security threats and their mitigation techniques for next‐generation SDN controllers[J]. Concurrency and Computation: Practice and Experience, 2020, 32(16): e5300. [3] BEHAL S, SINGH J. Detection and mitigation of DDoS attacks in SDN: a comprehensive review, research challenges and future directions[J]. Computer Science Review, 2020, 37: 1-25. [4] HOQUE N, BHATTACHARYYA D K, KALITA J K. Botnet in DDoS attacks: trends and challenges[J]. IEEE Communications Surveys & Tutorials, 2015, 17(4): 2242-2270. [5] 王秀磊, 陈鸣, 邢长友, 等. 一种防御DDoS攻击的软件定义安全网络机制[J]. 软件学报, 2016, 27(12): 3104-3119. WANG X L, CHEN M, XING C Y, et al. Software defined security networking mechanism against DDoS attacks[J]. Journal of Software, 2016, 27(12): 3104-3119. [6] 张朝昆, 崔勇, 唐翯祎, 等. 软件定义网络(SDN)研究进展[J]. 软件学报, 2015, 26(1): 62-81. ZHANG C K, CUI Y, TANG H Y, et al. State-of-the-art survey on software-defined networking (SDN)[J]. Journal of Software, 2015, 26(1): 62-81. [7] CUI Y, QIAN Q, GUO C, et al. Towards DDoS detection mechanisms in software-defined networking[J]. Journal of Network and Computer Applications, 2021(2): 103156. [8] 郑冰, 李华. SDN云网平台的服务质量模型研究[J]. 计算机工程与应用, 2022, 58(21): 98-108. ZHENG B, LI H. Research on service quality model for SDN-enabled cloud computing platform[J]. Computer Engineering and Applications, 2022, 58(21): 98-108. [9] YAN Q, YU F. Distributed denial of service attacks in software-defined networking with cloud computing[J]. IEEE Communications Magazine, 2015, 53(4): 52-59. [10] DAYAL N, MAITY P, SRIVASTAVA S, et al. Research trends in security and DDoS in SDN[J]. Security and Communication Networks, 2016, 9(18): 6386-6411. [11] LAAN J. Securing the SDN northbound interface with the AID of anomaly detection[D]. University of Amsterdam, 2015. [12] WANG S, CHAVEZ K G, KANDEEPAN S. SECO: SDN secure controller algorithm for detecting and defending denial of service attacks[C]//Proceedings of the 2017 5th International Conference on Information and Communication Technology (ICoIC7), 2017: 1-6. [13] XU T, GAO D, DONG P, et al. Mitigating the table-overflow attack in software-defined networking[J]. IEEE Transactions on Network and Service Management, 2017, 14(4): 1086-1097. [14] DHAWAN M, PODDAR R, MAHAJAN K, et al. SPHINX: detecting security attacks in software-defined networks[C]// Proceedings of the Network and Distributed System Security Symposium, 2015: 8-11. [15] LENG B, HUANG L, QIAO C, et al. FTRS: a mechanism for reducing flow table entries in software defined networks[J]. Computer Networks, 2017, 122: 1-15. [16] GIOTIS K, ARGYROPOULOS C, AANDROULIDAKIS G, et al. Combining OpenFlow and sFlow for an effective and scalable anomaly detection and mitigation mechanism on SDN environments[J]. Computer Networks, 2014, 62: 122-136. [17] LEE W, XIANG D. Information-theoretic measures for anomaly detection[C]//Proceedings of the 2001 IEEE Symposium on Security and Privacy, 2000: 130-143. [18] YADAV S K, SUGUNA P, VELUSAMY R L. Entropy based mitigation of distributed-denial-of-service (DDoS) attack on control plane in software-defined-network (SDN)[C]// Proceedings of the 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 2019: 1-7. [19] AHALAWAT A, DASH S S, PANDA A, et al. Entropy based DDoS detection and mitigation in OpenFlow enabled SDN[C]//Proceedings of the 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN), 2019: 1-5. [20] CARVALHO R N, BORDIM J L, ALCHIERI E A P. Entropy-based DoS attack identification in SDN[C]//Proceedings of the 2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), 2019: 627-634. [21] HEMMATI Z, MIRJALILY G, MOHTAJOLLAH Z. Entropy-based DDoS attack detection in SDN using dynamic threshold[C]//Proceedings of the 2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS), 2021: 1-5. [22] UJJAN R M A, PERVEZ Z, DAHAL K, et al. Entropy based features distribution for Anti-DDoS model in SDN[J]. Sustainability, 2021, 13(3): 1522. [23] LI R, WU B. Early detection of DDoS based on φ-entropy in SDN networks[C]//Proceedings of the 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 2020: 731-735. [24] 杨志, 韩俐. SDN环境下基于目的IP地址熵的DDoS攻击检测与易损机制研究[J]. 天津理工大学学报, 2020, 36(4): 39-44. YANG Z, HAN L. Research on DDoS attack detection and vulnerability mechanism based on entropy of destination IP address in SDN environment[J]. Journal of Tianjin University of Technology, 2020, 36(4): 39-44. [25] GUO D, WANG Y J, LUO X. A SDN-based multiple mechanism DDoS attack detection trigger algorithm[C]//Proceedings of the 2020 International Conference on Urban Engineering and Management Science (ICUEMS), 2020: 729-735. [26] WANG R, JIA Z, JU L. An entropy-based distributed DDoS detection mechanism in software-defined networking[C]//Proceedings of the 2015 IEEE Trustcom/BigDataSE/ISPA, 2015: 310-317. [27] 刘涛, 尹胜. SDN环境中基于交叉熵的分阶段DDoS攻击检测与识别[J]. 计算机应用与软件, 2021, 38(2): 328-333. LIU T, YIN S. Detection and identification of DDoS attacks based on cross entropy in SDN environment[J]. Computer Applications and Software, 2021, 38(2): 328-333. [28] KALKAN K, ALTAY L, GUR G, et al. JESS: joint entropy-based DDoS defense scheme in SDN[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(10): 2358-2372. [29] MING X Y, RAMSURRUN V, SEEAM A. Detection and mitigation of DDoS attacks using conditional entropy in software-defined networking[C]//Proceedings of the 2019 11th International Conference on Advanced Computing (ICoAC), 2019: 66-71. [30] MEHR S Y, RAMAMURTHY B. An SVM based DDoS attack detection method for Ryu SDN controller[C]//Proceedings of the 15th International Conference on Emerging Networking Experiments and Technologies, 2019: 72-73. [31] YE J, CHENG X, ZHU J, et al. A DDoS attack detection method based on SVM in software defined network[J]. Security and Communication Networks, 2018 (1): 9804061. [32] ZHAO J, ZENG P, SHANG W, et al. DDoS attack detection based on one-class SVM in SDN[C]//Proceedings of the 6th International Conference on Artificial Intelligence and Security (ICAIS 2020), Hohhot, China, July 17-20, 2020: 189-200. [33] MYINT O O M, KAMOLPHIWONG S, KAMOLPHIWONG T, et al. Advanced support vector machine‐(ASVM‐) based detection for distributed denial of service (DDoS) attack on software defined networking (SDN)[J]. Journal of Computer Networks and Communications, 2019 (1): 8012568. [34] SHI D, MUDAR S. DDoS attack detection method based on improved KNN with the degree of DDoS attack in software-defined networks[J]. IEEE Access, 2020, 8: 5039-5048. [35] LATAH M, TOKER L. Towards an efficient anomaly-based intrusion detection for software-defined networks[J]. IET Networks, 2018, 7(6): 453-459. [36] FENG S, YANG G, MAN W. Research on DDoS attack detection based on machine learning in SDN environment[C]//Proceedings of the 2023 IEEE 7th Information Technology and Mechatronics Engineering Conference (ITOEC), 2023: 821-825. [37] FIRDAUS D, MUNADI R, PURWANTO Y. DDoS attack detection in software defined network using ensemble k-means++ and random forest[C]//Proceedings of the 2020 3rd International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), 2020: 164-169. [38] XU Y, SUN H, XIANG F, et al. Efficient DDoS detection based on K-FKNN in software defined networks[J]. IEEE Access, 2019, 7: 160536-160545. [39] SANTOS R, SOUZA D, SANTO W, et al. Machine learning algorithms to detect DDoS attacks in SDN[J]. Concurrency and Computation: Practice and Experience, 2020, 32(16): e5402. [40] KHASHAB F, MOUBARAK J, FEGHALI A, et al. DDoS attack detection and mitigation in SDN using machine learning[C]//Proceedings of the 2021 IEEE 7th International Conference on Network Softwarization (NetSoft), 2021: 395-401. [41] MUHAMMAD A, DENGPAN Y, AQIL T, et al. Adaptive machine learning based distributed denial-of-services attacks detection and mitigation system for SDN-enabled IoT[J]. Sensors, 2022, 22(7): 2697. [42] WU Z, XU Q, WANG J, et al. Low-rate DDoS attack detection based on factorization machine in software defined network[J]. IEEE Access, 2020, 8: 17404-17418. [43] ALASHHAB A A, ZAHID M S M, ALASHHAB M, et al. Online machine learning approach to detect and mitigate low-rate DDoS attacks in SDN-based networks[C]//Proceedings of the 2023 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET), 2023: 152-157. [44] PéREZ-DíAZ J A, VALDOVINOS I A, CHOO K K R, et al. A flexible SDN-based architecture for identifying and mitigating low-rate DDoS attacks using machine learning[J]. IEEE Access, 2020, 8: 155859-155872. [45] JAZI H H, GONZALE H, STAKHANOVA N, et al. Detecting HTTP-based application layer DoS attacks on web servers in the presence of sampling[J]. Computer Networks, 2017, 121: 25-36. [46] FRANCESCO M, CAN A F, FRANCESCO P, et al. Machine-learning-assisted DDoS attack detection with P4 language[C]//Proceedings of the 2020 IEEE International Conference on Communications (ICC), 2020: 1-6. [47] FRANCESCO M, CAN A F, FRANCESCO P, et al. Machine-learning-enabled DDoS attacks detection in P4 programmable networks[J]. Journal of Network and Systems Management, 2022, 30: 1-27. [48] AURELIO M R, SERGIO M F P, JULIANA S D. Detecting and mitigating DDoS attacks with moving target defense approach based on automated flow classification in SDN networks[J]. Computers & Security, 2023, 134: 103462. [49] ALHAMAMI K, ALBERMANY S. DDoS attack detection using machine learning algorithm in SDN network[C]//Proceedings of the 2023 Al-Sadiq International Conference on Communication and Information Technology (AICCIT), 2023: 97-102. [50] TAHIROU A K, KONATE K, SOIDRIDINE M M. Detection and mitigation of DDoS attacks in SDN using machine learning (ML)[C]//Proceedings of the 2023 International Conference on Digital Age & Technological Advances for Sustainable Development (ICDATA), 2023: 52-59. [51] BALA S, AHSAN S M M. Detecting DDoS attacks in software define networking: a machine learning based approach[C]//Proceedings of the 2023 International Conference on Next-Generation Computing, IoT and Machine Learning (NCIM), 2023: 1-6. [52] DAYAL N, SRIVASTAVA S. An RBF-PSO based approach for early detection of DDoS attacks in SDN[C]//Proceedings of the 2018 10th International Conference on Communication Systems & Networks (COMSNETS), 2018: 17-24. [53] WANG M, LU Y, QIN J. A dynamic MLP-based DDoS attack detection method using feature selection and feedback[J]. Computers & Security, 2020, 88: 101645. [54] AASTHA M , BURHAN M , SHAAD M K , et al. An optimized weighted voting based ensemble model for DDoS attack detection and mitigation in SDN environment[J]. Microprocessors and Microsystems, 2022, 89: 104412. [55] LIU Z, WANG Y, FENG F, et al. A DDoS detection method based on feature engineering and machine learning in software-defined networks[J]. Sensors, 2023, 23(13): 6176. [56] LI C, WU Y, YUAN X, et al. Detection and defense of DDoS attack-based on deep learning in OpenFlow‐based SDN[J]. International Journal of Communication Systems, 2018, 31(5): e3497. [57] 李传煌, 吴艳, 钱正哲, 等. SDN下基于深度学习混合模型的DDoS攻击检测与防御[J]. 通信学报, 2018, 39(7): 176-187. LI C H, WU Y, QIAN Z Z, et al. DDoS attack detection and defense based on hybrid deep learning model in SDN[J]. Journal on Communications, 2018, 39(7): 176-187. [58] ARIVUDAINAMBI D, KA V K, CHAKKARAVARTHY S S. LION IDS: a meta-heuristics approach to detect DDoS attacks against software-defined networks[J]. Neural Computing and Applications, 2019, 31: 1491-1501. [59] WANG H, LI W. DDosTC: a Transformer-based network attack detection hybrid mechanism in SDN[J]. Sensors, 2021, 21(15): 5047. [60] JANABI A H, KANAKIS T, JOHNSON M. Convolutional neural network based algorithm for early warning proactive system security in software defined networks[J]. IEEE Access, 2022, 10: 14301-14310. [61] LIANG X, ZNATI T. A long short-term memory enabled framework for DDoS detection[C]//Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), 2019: 1-6. [62] ITAGI V, JAVALI M, MADHUKESHWAR H, et al. DDoS attack detection in SDN environment using bi-directional recurrent neural network[C]//Proceedings of the 2021 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), 2021: 123-128. [63] ASSIS M V O, CARVALHO L F, LLORET J, et al. A GRU deep learning system against attacks in software defined networks[J]. Journal of Network and Computer Applications, 2021, 177: 102942. [64] CHETOUANE A, KAROUI K. Performance improvement of DDoS intrusion detection model using hybrid deep learning method in the SDN environment[C]//Proceedings of the 2022 IEEE 21st International Conference on Ubiquitous Computing and Communications (IUCC/CIT/DSCI/SmartCNS), 2022: 159-166. [65] 白坚镜, 顾瑞春, 刘清河. SDN环境中基于Bi-LSTM的DDoS攻击检测方案[J]. 计算机工程与科学, 2023, 45(2): 277-285. BAI J J, GU R C, LIU Q H. A DDoS attack detection scheme based on Bi-LSTM in SDN[J]. Computer Engineering & Science, 2023, 45(2): 277-285. [66] CHEN L, WANG Z, HUO R, et al. An adversarial DBN-LSTM method for detecting and defending against DDoS attacks in SDN environments[J]. Algorithms, 2023, 16(4): 197. [67] NUGRAHA B, MURTHY R N. Deep learning-based slow DDoS attack detection in SDN-based networks[C]//Proceedings of the 2020 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), 2020: 51-56. [68] SAID R B, ASKERZADE I. Attention-based CNN-BiLSTM deep learning approach for network intrusion detection system in software defined networks[C]//Proceedings of the 2023 5th International Conference on Problems of Cybernetics and Informatics (PCI), 2023: 1-5. [69] ABDALLAH M, AN Le KHAC N, JAHROMI H, et al. A hybrid CNN-LSTM based approach for anomaly detection systems in SDNs[C]//Proceedings of the 16th International Conference on Availability, Reliability and Security, 2021: 1-7. [70] NOVAES M P, CARVALHO L F, LLORET J, et al. Long short-term memory and fuzzy logic for anomaly detection and mitigation in software-defined network environment[J]. IEEE Access, 2020, 8: 83765-83781. [71] NOVAES M P, CARVALHO L F, LLORET J, et al. Adversarial deep learning approach detection and defense against DDoS attacks in SDN environments[J]. Future Generation Computer Systems, 2021, 125: 156-167. [72] WANG J, WANG L. SDN-defend: a lightweight online attack detection and mitigation system for DDoS attacks in SDN[J]. Sensors, 2022, 22(21): 8287. [73] ELSAYED M S, LEKHAC N A, DEV S, et al. DDoSNet: a deep-learning model for detecting network attacks[C]//Proceedings of the 2020 IEEE 21st International Symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), 2020: 391-396. [74] ELSAYED M S, LEKHAC N A, AZER M A, et al. A flow-based anomaly detection approach with feature selection method against DDoS attacks in SDNs[J]. IEEE Transactions on Cognitive Communications and Networking, 2022, 8(4): 1862-1880. [75] LI M, ZHANG B, WANG G, et al. A DDoS attack detection method based on deep learning two-level model CNN-LSTM in SDN network[C]//Proceedings of the 2022 International Conference on Cloud Computing, Big Data Applications and Software Engineering (CBASE), 2022: 282-287. [76] ALGHAZZAWI D, BAMASAG O, ULLAH H, et al. Efficient detection of DDoS attacks using a hybrid deep learning model with improved feature selection[J]. Applied Sciences, 2021, 11(24): 11634. [77] MOUSA A K, ABDUHHAH M N. An improved deep learning model for DDoS detection based on hybrid stacked autoencoder and checkpoint network[J]. Future Internet, 2023, 15(8): 278. [78] POLAT H, TURKOGLU M, POLAT O. Deep network approach with stacked sparse autoencoders in detection of DDoS attacks on SDN‐based VANET[J]. IET Communications, 2020, 14(22): 4089-4100. [79] SHAJI N S, JAIN T, MUTHALAGU R, et al. Deep-discovery: anomaly discovery in software-defined networks using artificial neural networks[J]. Computers & Security, 2023, 132: 103320. [80] SUN G Z, JIANG W, YU G U, et al. DDoS attacks and flash event detection based on flow characteristics in SDN[C]//Proceedings of the 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), 2018: 1-6. [81] NADEEM M A, MUHAMMAD I, UD S M D, et al. Low rate DDoS detection using weighted federated learning in SDN control plane in IoT network[J]. Applied Sciences, 2023, 13(3): 1431-1431. [82] 王智, 张浩, 顾建军. SDN网络中基于联合熵与多重聚类的DDoS攻击检测[J]. 信息网络安全, 2023, 23(10): 1-7. WANG Z, ZHANG H, GU J J. A hybrid method of joint entropy and multiple clustering based DDoS detection in SDN[J]. Netinfo Security, 2023, 23(10): 1-7. [83] 葛晨洋, 刘勤让, 裴雪, 等. 软件定义网络中高效协同防御分布式拒绝服务攻击的方案[J]. 计算机应用, 2023, 43(8): 2477-2485. GE C Y, LIU Q R, PEI X, et al. Efficient collaborative defense scheme against distributed denial of service attacks in software defined network[J]. Journal of Computer Applications, 2023, 43(8): 2477-2485. [84] ELSAYED M S, LE-KHAC N A, ALBAHAR M A, et al. A novel hybrid model for intrusion detection systems in SDNs based on CNN and a new regularization technique[J]. Journal of Network and Computer Applications, 2021, 191: 103160. [85] MHAMDI L, MCLERNON D, EL-MOUSSA F, et al. A deep learning approach combining autoencoder with one-class SVM for DDoS attack detection in SDNs[C]//Proceedings of the 2020 IEEE Eighth International Conference on Communications and Networking (ComNet), 2020: 1-6. [86] 奚玉龙. 基于深度学习的DDoS攻击检测模型[J]. 计算机系统应用, 2021, 30(4): 216-221. XI Y L. DDoS attack detection model based on deep learning[J]. Computer System Applications, 2021, 30(4): 216-221. [87] 杨亚红, 王海瑞. 基于Renyi熵和BiGRU算法实现SDN环境下的DDoS攻击检测方法[J]. 计算机科学, 2022, 49(S1): 555-561. YANG Y H, WANG H R. DDoS attack detection method in SDN environment based on Renyi entropy and BiGRU algorithm[J]. Computer Science, 2022, 49(S1): 555-561. [88] 傅友, 邹东升. SDN中基于条件熵和决策树的DDoS攻击检测方法[J]. 重庆大学学报, 2023, 46(7): 1-8. FU Y, ZOU D S. A DDoS attack detection method based on conditional entropy and decision tree in SDN[J]. Journal of Chongqing University, 2023, 46(7): 1-8. [89] LIU Y, ZHI T, SHEN M, et al. Software-defined DDoS detection with information entropy analysis and optimized deep learning[J]. Future Generation Computer Systems, 2022, 129: 99-114. [90] DEHKORDI B A, SOLTANAGHAEI M, BOROUJENI Z F. The DDoS attacks detection through machine learning and statistical methods in SDN[J]. The Journal of Supercomputing, 2020, 77(3): 1-33. [91] 张龙, 王劲松. SDN中基于信息熵与DNN的DDoS攻击检测模型[J]. 计算机研究与发展, 2019, 56(5): 909-918. ZHANG L, WANG J S. DDoS attack detection model based on information entropy and DNN in SDN[J]. Journal of Computer Research and Development, 2019, 56(5): 909-918. [92] ZHANG L, WANG J. A hybrid method of entropy and SSAE-SVM based DDoS detection and mitigation mechanism in SDN[J]. Computers & Security, 2022, 115: 102604. [93] MATEUS J, ZODI G, BAGULA A. Federated learning-based solution for DDoS detection in SDN[C]//Proceedings of the 2024 International Conference on Computing, Networking and Communications (ICNC), 2024: 875-880. [94] ZAINUDIN A, AKTER R, KIM D, et al. FedDDoS: an efficient federated learning-based DDoS attacks classification in SDN-enabled IIoT networks[C]//Proceedings of the 2022 13th International Conference on Information and Communication Technology Convergence (ICTC), 2022: 1279-1283. [95] LI J, LYU L, LIU X, et al. FLEAM: a federated learning empowered architecture to mitigate DDoS in industrial IoT[J]. IEEE Transactions on Industrial Informatics, 2021, 18(6): 4059-4068. [96] POLAT H, TURKOGLU M, POLAT O, et al. A novel approach for accurate detection of the DDoS attacks in SDN-based SCADA systems based on deep recurrent neural networks[J]. Expert Systems with Applications, 2022, 197: 116748. [97] PHAN T, SULTANA S, NGUYEN T, et al. Q-TRANSFER: a novel framework for efficient deep transfer learning in networking[C]//Proceedings of the 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), 2020: 146-151. [98] 沈金番. SDN下基于强化学习的DDoS攻击抵御方法研究[D]. 杭州: 浙江大学, 2020. SHEN J F. Research on DDoS attack defense method based on reinforcement learning in SDN[D]. Hangzhou: Zhejiang University, 2020. [99] KHOOI X Z, CSIKOR L, KANG M S, et al. In-network defense against AR-DDoS attacks[C]//Proceedings of the SIGCOMM’20 Poster and Demo Sessions, 2020: 18-20. [100] BHATIA S, MOHAY G, TICKLE A, et al. Parametric differences between a real-world distributed denial-of-service attack and a flash event[C]//Proceedings of the 2011 Sixth International Conference on Availability, Reliability and Security, 2011: 210-217. [101] 刘俊杰, 王珺, 王梦林, 等. SDN中基于C4.5决策树的DDoS攻击检测[J]. 计算机工程与应用, 2019, 55(20): 84-88. LIU J J, WANG J, WANG M L, et al. DDoS attack detection based on C4.5 in SDN[J]. Computer Engineering and Applications, 2019, 55(20): 84-88. |
| [1] | 胡翔坤, 李华, 冯毅雄, 钱松荣, 李键, 李少波. 基于深度学习的基础设施表面裂纹检测方法研究进展[J]. 计算机工程与应用, 2025, 61(1): 1-23. |
| [2] | 黄施洋, 奚雪峰, 崔志明. 大模型时代下的汉语自然语言处理研究与探索[J]. 计算机工程与应用, 2025, 61(1): 80-97. |
| [3] | 杨晓文, 冯泊栋, 韩慧妍, 况立群, 韩燮, 何黎刚. 结合通道剪枝和通道注意力的轻量型车辆点云补全网络[J]. 计算机工程与应用, 2025, 61(1): 232-242. |
| [4] | 薛钦原, 胡珊珊, 胡新军, 严松才. 改进YOLOv7的结直肠息肉检测算法[J]. 计算机工程与应用, 2025, 61(1): 243-251. |
| [5] | 孙刘杰, 王佳耀, 王文举. 基于单幅图像形状特征的三维漫画人脸重建[J]. 计算机工程与应用, 2025, 61(1): 282-290. |
| [6] | 车运龙, 袁亮, 孙丽慧. 基于强语义关键点采样的三维目标检测方法[J]. 计算机工程与应用, 2024, 60(9): 254-260. |
| [7] | 邱云飞, 王宜帆. 双分支结构的多层级三维点云补全[J]. 计算机工程与应用, 2024, 60(9): 272-282. |
| [8] | 叶彬, 朱兴帅, 姚康, 丁上上, 付威威. 面向桌面交互场景的双目深度测量方法[J]. 计算机工程与应用, 2024, 60(9): 283-291. |
| [9] | 王正来, 关胜晓. 基于改进积分梯度的黑盒迁移攻击算法[J]. 计算机工程与应用, 2024, 60(9): 309-316. |
| [10] | 王彩玲, 闫晶晶, 张智栋. 基于多模态数据的人体行为识别方法研究综述[J]. 计算机工程与应用, 2024, 60(9): 1-18. |
| [11] | 廉露, 田启川, 谭润, 张晓行. 基于神经网络的图像风格迁移研究进展[J]. 计算机工程与应用, 2024, 60(9): 30-47. |
| [12] | 杨晨曦, 庄旭菲, 陈俊楠, 李衡. 基于深度学习的公交行驶轨迹预测研究综述[J]. 计算机工程与应用, 2024, 60(9): 65-78. |
| [13] | 宋建平, 王毅, 孙开伟, 刘期烈. 结合双曲图注意力网络与标签信息的短文本分类方法[J]. 计算机工程与应用, 2024, 60(9): 188-195. |
| [14] | 周定威, 扈静, 张良锐, 段飞亚. 面向目标检测的数据集标签遗漏的协同修正技术[J]. 计算机工程与应用, 2024, 60(8): 267-273. |
| [15] | 裴文灿, 孙光伟, 黄金国, 徐丁辉, 刘竞. 田间即时鲜烟叶SPAD值预测和成熟度识别方法[J]. 计算机工程与应用, 2024, 60(8): 348-360. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||