
计算机工程与应用 ›› 2024, Vol. 60 ›› Issue (24): 1-19.DOI: 10.3778/j.issn.1002-8331.2405-0407
龙享福,李少波,张仪宗,杨磊,李传江
出版日期:2024-12-15
发布日期:2024-12-12
LONG Xiangfu, LI Shaobo, ZHANG Yizong, YANG Lei, LI Chuanjiang
Online:2024-12-15
Published:2024-12-12
摘要: 机器学习是人工智能和数据科学的核心所在,被广泛应用于教育、交通运输和制造业等领域;随着机器学习的发展及应用领域的延伸,模型在可解释性和公平性等方面显现了一些需要解决的问题。因果学习作为一种将因果关系和机器学习技术相结合的方法,可以增强模型的可解释性,解决公平性等问题,其研究已逐渐成为学术界的热点。因此,在介绍因果学习的相关理论知识的基础上,根据因果学习所能解决的问题对因果解释、因果监督学习、因果公平、因果强化学习等技术进行了全方位的分析概述;从多角度归纳了因果学习在医学、农业和智能制造等领域的应用。最后,总结了因果学习存在的一些开放性问题和挑战,并给出了未来的研究方向,旨在推动因果学习的不断发展。
龙享福, 李少波, 张仪宗, 杨磊, 李传江. 因果学习方法和应用概述[J]. 计算机工程与应用, 2024, 60(24): 1-19.
LONG Xiangfu, LI Shaobo, ZHANG Yizong, YANG Lei, LI Chuanjiang. Overview of Causal Learning Techniques and Applications[J]. Computer Engineering and Applications, 2024, 60(24): 1-19.
| [1] ARTI S, HIDAYAH I, KUSUMAWARDANI S S. Research trend of causal machine learning method: a literature review[J]. International Journal on Informatics for Development, 2020, 9(2): 111-118. [2] WUEST T, WEIMER D, IRGENS C, et al. Machine learning in manufacturing: advantages, challenges, and applications[J]. Production & Manufacturing Research, 2016, 4(1): 23-45. [3] GUNNING D, AHA D W. Darpa’s explainable artificial inte- lligence program[J]. AI Magazine, 2019, 40(2): 44-58. [4] LIPTON Z C. The mythos of model interpretability: in machine learning, the concept of interpretability is both important and slippery[J]. Queue, 2018, 16(3): 31-57. [5] D’AMOUR A, HELLER K, MOLDOVAN D, et al. Under specification presents challenges for credibility in modern machine learning[J]. The Journal of Machine Learning Research, 2022, 23(1): 10237-10297. [6] MEHRABI N, MORSTATTER F, SAXENA N, et al. A survey on bias and fairness in machine learning[J]. ACM Computing Surveys (CSUR), 2021, 54(6): 1-35. [7] BAROCAS S, HARDT M, NARAYANAN A. Fairness in machine learning[J]. Nips Tutorial, 2017(1): 11-29. [8] DULAC-ARNOLD G, MANKOWITZ D J, HESTER T. Challenges of real-world reinforcement learning[J]. arXiv:1904. 12901, 2019. [9] PEARL J. The seven tools of causal inference, with reflections on machine learning[J]. Communications of the ACM, 2019, 62(3): 54-60. [10] AHMED O, TR?UBLE F, GOYAL A, et al. Causalworld: a robotic manipulation benchmark for causal structure and transfer learning[J]. arXiv:2010.04296, 2020. [11] SCH?LKOPF B, LOCATELLO F, BAUER S, et al. Toward causal representation learning[J]. Proceedings of the IEEE, 2021, 109(5): 612-634. [12] GOYAL A, BENGIO Y. Inductive biases for deep learning of higher-level cognition[J]. Proceedings of the Royal Society A, 2022, 478: 20210068-20210103. [13] MORAFFAH R, KARAMI M, GUO R, et al. Causal interpretability for machine learning-problems, methods and evaluation[J]. ACM SIGKDD Explorations Newsletter, 2020, 22(1): 18-33. [14] LU C. Learning causal representations for generalization and adaptation in supervised, imitation, and reinforcement learning[D]. Cambridge: University of Cambridge, 2022. [15] LOFTUS J R, RUSSELL C, KUSNER M J, et al. Causal reasoning for algorithmic fairness[J]. arXiv:1805.05859, 2018. [16] 李家宁, 熊睿彬, 兰艳艳, 等. 因果机器学习的前沿进展综述[J]. 计算机研究与发展, 2023, 60(1): 59-84. LI J N, XIONG R B, LAN Y Y, et al. Overview of the frontier progress of causal machine learning[J]. Journal of Computer Research and Development, 2023, 60(1): 59-84. [17] MAKHLOUF K, ZHIOUA S, PALAMIDESSI C. Survey on causal-based machine learning fairness notions[J]. arXiv:2010.09553, 2020. [18] YAO L Y, CHU Z X, LI S, et al. A survey on causal inference[J]. ACM Transactions on Knowledge Discovery from Data (TKDD), 2021, 15(5): 1-46. [19] 孙悦雯, 柳文章, 孙长银. 基于因果建模的强化学习控制: 现状及展望[J]. 自动化学报, 2023, 49(3): 661-677. SUN Y W, LIU W Z, SUN C Y. Causality in reinforcement learning control: the state of the art and prospects[J]. Acta Automatica Sinica, 2023, 49(3): 661-677. [20] ZHANG K X, SUN Q Y, ZHAO C Q, et al. Causal reasoning in typical computer vision tasks[J]. Science China Technological Sciences, 2023, 67(1): 105-120. [21] VUKOVI? M, THALMANN S. Causal discovery in manufacturing: a structured literature review[J]. Journal of Manufacturing and Materials Processing, 2022, 6(1): 10-27. [22] PEARL J, MACKENZIE D. The book of why: the new science of cause and effect[M]. New York: Basic Books, 2018. [23] IMBENS G W, RUBIN D B. Rubin causal model[M]//Microeconometrics. London: Springer, 2010: 229-241. [24] ZIGLER C M, WATTS K, YEH R W, et al. Model feedback in Bayesian propensity score estimation[J]. Biometrics, 2013, 69(1): 263-273. [25] ROBINS J M, ROTNITZKY A, ZHAO L P. Estimation of regression coefficients when some regressors are not always observed[J]. Journal of the American Statistical Association, 1994, 89: 846-866. [26] DUDíK M, LANGFORD J, LI L H. Doubly robust policy evaluation and learning[J]. arXiv:1103.4601, 2011. [27] RUBIN D B. Randomization analysis of experimental data: the fisher randomization test comment[J]. Journal of the American Statistical Association, 1980, 75: 591-593. [28] HIRANO K, IMBENS G W, RIDDER G. Efficient estimation of average treatment effects using the estimated propensity score[J]. Econometrica, 2003, 71(4): 1161-1189. [29] PEARL J. Causality[M]. Cambridge, ?UK: Cambridge University Press, 2009. [30] VANDERWEELE T. Explanation in causal inference: methods for mediation and interaction[M]. Oxford, UK: Oxford University Press, 2015. [31] 陈珂锐, 孟小峰. 机器学习的可解释性[J]. 计算机研究与发展, 2020, 57(9): 1971-1986. CHEN K R, MENG X F. Interpretation and understanding in machine learning[J]. Computer Research and Development, 2020, 57(9): 1971-1986. [32] LEE S, HOOVER B, STROBELT H, et al. Diffusion explainer: visual explanation for text-to-image stable diffusion[J]. arXiv:2305.03509, 2023. [33] JIN W, LI X, FATEHI M, et al. Generating post-hoc explanation from deep neural networks for multi-modal medical image analysis tasks[J]. Methods X, 2023, 10: 102009. [34] CHEN L, CAI X, XING J, et al. Towards transparent deep learning for surface water detection from SAR imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 118: 103287. [35] CHATTOPADHYAY A, MANUPRIYA P, SARKAR A, et al. Neural network attributions: a causal perspective[C]//Proceedings of the 36th International Conference on Machine Learning, 2019: 981-990. [36] FRYE C, ROWAT C, FEIGE I. Asymmetric shapley values: incorporating causal knowledge into model-agnostic explainability[C]//Advances in Neural Information Processing Systems, 2020: 1229-1239. [37] HESKES T, SIJBEN E, BUCUR I G, et al. Causal shapley values: Exploiting causal knowledge to explain individual predictions of complex models[C]//Advances in Neural Information Processing Systems, 2020: 4778-4789. [38] HASAN A B, TOLGA ?. DreaMR: diffusion-driven counterfactual explanation for functional MRI[J]. arXiv:2307. 09547, 2023. [39] JEANNERET G, SIMON L, JURIE F. Adversarial counterfactual visual explanation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 16425-16435. [40] 黄珊珊, 王元浩, 龚志黎, 等. 基于因果表征学习的可控图像生成[J]. 信息与电子工程前沿, 2024, 25(1): 135-149. HUANG S S, WANG Y H, GONG Z L, et al. Controllable image generation based on causal representation learning[J]. Frontiers of Information Technology & Electronic Engineering, 2024, 25(1): 135-148. [41] DELANEY E, PAKRASHI A, GREENE D, et al. Counterfactual explanations for misclassified images: How human and machine explanations differ[J]. Artificial Intelligence, 2023, 324: 103995. [42] ROTEM O, ZARITSKY A. DISentangled counterfactual visual interpretER (DISCOVER) generalizes to natural images[J]. arXiv:2406.15918, 2024 [43] WANG P, VASCONCELOS N. Scout: self-aware discriminant counterfactual explanations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 8981-8990. [44] KENNY E M, KEANE M T. On generating plausible counterfactual and semi-factual explanations for deep learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 11575-11585. [45] ABRATE C, BONCHI F. Counterfactual graphs for explainable classification of brain networks[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021: 2495-2504. [46] GEVAERT A, ROUSSEAU A J, BECKER T, et al. Evaluating feature attribution methods in the image domain[J]. Machine Learning, 2024, 24: 1-46. [47] BILODEAU B, JAQUES N, KOH P W, et al. Impossibility theorems for feature attribution[J]. Proceedings of the National Academy of Sciences, 2024, 121(2): e2304406120. [48] KANEHIRA A, TAKEMOTO K, INAYOSHI S, et al. Multimodal explanations by predicting counterfactuality in videos[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 8594-8602. [49] LI Y C, WANG X, XIAO J B, et al. Invariant grounding for video question answering[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 2928-2937. [50] ZANG C Q, WANG H Q, PEI M T, et al. Discovering the real association: multimodal causal reasoning in video question answering[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 19027-19036. [51] TSIRTSIS S, GOMEZ-RODRIGUEZ M. Decisions, counterfactual explanations and strategic behavior[C]//Advances in Neural Information Processing Systems, 2020, 33: 16749-16760. [52] YANG F, ALVA S S, CHEN J H, et al. Model based counterfactual synthesizer for interpretation[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021: 1964-1974. [53] HASTIE T, TIBSHIRANI R, FRIEDMAN J, et al. Overview of supervised learning[J]. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2009: 9-41. [54] KADDOUR J, LYNCH A, LIU Q, et al. Causal machine learning: a survey and open problems[J]. arXiv:2206.15475, 2022. [55] RAHUL M R, CHIDDARWAR S S. A causality-inspired data augmentation approach to cross-domain burr detection using randomly weighted shallow networks[J]. International Journal of Machine Learning and Cybernetics, 2023, 14(12): 4223-4236. [56] KAUSHIK D, SETLUR A, HOVY E, et al. Explaining the efficacy of counterfactually augmented data[J]. arXiv:2010. 02114, 2020. [57] TENEY D, ABBASNEDJAD E, VAN DEN HENGEL A. Learning what makes a difference from counterfactual examples and gradient supervision[C]//Proceedings of IEEE/CVF International Conference on Computer Vision (ECCV 2020), 2020: 580-599. [58] URPí N A, BAGATELLA M, VLASTELICA M, et al. Causal action influence aware counterfactual data augmentation[J]. arXiv:2405.18917v1, 2024. [59] ARJOVSKY M, BOTTOU L, GULRAJANI I, et al. Invariant risk minimization[J]. arXiv:1907.02893, 2019. [60] XU J, JI C, CAO Y, et al. Causality-inspired latent feature augmentation for single domain generalization[J]. arXiv:2406.05980, 2024. [61] WANG Y, YU K, XIANG G, et al. Discovering causally invariant features for out-of-distribution generalization[J]. Pattern Recognition, 2024, 150: 110338. [62] KRUEGER D, CABALLERO E, JACOBSEN J H, et al. Out-of-distribution generalization via risk extrapolation (REX)[C]//Proceedings of the 38th International Conference on Machine Learning, 2021: 5815-5826. [63] VEITCH V, D’AMOUR A, YADLOWSKY S, et al. Counterfactual invariance to spurious correlations in text classification[C]//Advances in Neural Information Processing Systems, 2021: 16196-16208. [64] AHUJA K, CABALLERO E, ZHANG D, et al. Invariance principle meets information bottleneck for out-of-distribution generalization[C]//Advances in Neural Information Processing Systems, 2021: 3438-3450. [65] PETERS J, BüHLMANN P, MEINSHAUSEN N. Causal inference by using invariant prediction: identification and confidence intervals[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2016, 78(5): 947-1012. [66] PARASCANDOLO G, KILBERTUS N, ROJAS-CARULLA M, et al. Learning independent causal mechanisms[C]//Proceedings of the 35th International Conference on Machine LearningR, 2018: 4036-4044. [67] GOYAL A, LAMB A, HOFFMANN J, et al. Recurrent independent mechanisms[J]. arXiv:1909.10893, 2019. [68] MADAN K, KE N R, GOYAL A, et al. Fast and slow learning of recurrent independent mechanisms[J]. arXiv:2105.08710, 2021. [69] YUE Z Q, SUN Q R, HUA X S, et al. Transporting causal mechanisms for unsupervised domain adaptation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 8599-8608. [70] TESHIMA T, SATO I, SUGIYAMA M. Few-shot domain adaptation by causal mechanism transfer[C]//Proceedings of the 37th International Conference on Machine Learning, 2020: 9458-9469. [71] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. [72] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017: 5998-6008. [73] KUSNER M J, LOFTUS J, RUSSELL C, et al. Counterfactual fairness[C]//Advances in Neural Information Processing Systems, 2017: 4066-4076. [74] CHIAPPA S. Path-specific counterfactual fairness[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019: 7801-7808. [75] NABI R, SHPITSER I. Fair inference on outcomes[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018: 1931-1940. [76] ZHU Y C, MA J, WU L, et al. Path-specific counterfactual fairness for recommender systems[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023: 3638-3649. [77] MA J, GUO R, ZHANG A, et al. Learning for counterfactual fairness from observational data[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023: 1620-1630. [78] CHEN H, LU W B, SONG R, et al. On learning and testing of counterfactual fairness through data preprocessing[J]. arXiv:2202.12440, 2022. [79] HAN X, ZHANG L, WU Y K, et al. Achieving counterfactual fairness for anomaly detection[C]//Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2023: 55-66. [80] HU Y Y, WU Y K, ZHANG L, et al. Fair multiple decision making through soft interventions[C]//Advances in Neural Information Processing Systems, 2020: 17965-17975. [81] GOEL N, AMAYUELAS A, DESHPANDE A, et al. The importance of modeling data missingness in algorithmic fairness: a causal perspective[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 7564-7573. [82] PLECKO D, BAREINBOIM E. Causal fairness for outcome control[C]//Advances in Neural Information Processing Systems, 2024: 47575-47597. [83] ZUO A Q, WEI S S, LIU T L, et al. Counterfactual fairness with partially known causal graph[C]//Advances in Neural Information Processing Systems, 2022: 1238-1252. [84] ZUO A, LI Y, WEI S, et al. Interventional fairness on partially known causal graphs: a constrained optimization approach[J]. arXiv:2401.10632, 2024. [85] SUTTON R S, BARTO A G. Reinforcement learning: an introduction[M]. Cambridge: MIT Press, 1998. [86] BANNON J, WINDSOR B, SONG W, et al. Causality and batch reinforcement learning: complementary approaches to planning in unknown domains[J]. arXiv:2006.02579, 2020. [87] WEICHWALD S, MOGENSEN S W, LEE T E, et al. Learning by doing: controlling a dynamical system using causality, control, and reinforcement learning[C]//Proceedings of the NeurIPS 2021 Competitions and Demonstrations Track, 2022: 246-258. [88] ZENG Y, CAI R C, SUN F C, et al. A survey on causal reinforcement learning[J]. arXiv:2302.05209, 2023. [89] SAUTER A W, ACAR E, FRANCOIS-LAVET V. A meta-reinforcement learning algorithm for causal discovery[C]//Proceedings of Conference on Causal Learning and Reasoning, 2023: 602-619. [90] LI J, LUO Y, ZHANG X W. Causal reinforcement learning: an instrumental variable approach[J]. arXiv:2103.04021, 2021. [91] LIAO L F, FU Z Y, YANG Z R, et al. Instrumental variable value iteration for causal offline reinforcement learning[J]. arXiv:2102.09907, 2021. [92] CHEN S X, ZHANG B. Estimating and improving dynamic treatment regimes with a time-varying instrumental variable[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2023, 85(2): 427-453. [93] CHEN Y T, XU L Y, GULCEHRE C, et al. On instrumental variable regression for deep offline policy evaluation[J]. The Journal of Machine Learning Research, 2022, 23(1): 13635-13674. [94] TENNENHOLTZ G, HALLAK A, DALAL G, et al. On covariate shift of latent confounders in imitation and reinforcement learning[J]. arXiv:2110.06539, 2021. [95] SWAMY G, CHOUDHURY S, BAGNELL D, et al. Causal imitation learning under temporally correlated noise[C]//Proceedings of the 39th International Conference on Machine Learning, 2022: 20877-20890. [96] BENNETT A, KALLUS N. Proximal reinforcement learning: efficient off-policy evaluation in partially observed markov decision processes[J]. Operations Research, 2023, 3: 1071-1086. [97] SHI C C, UEHARA M, HUANG J, et al. A minimax learning approach to off-policy evaluation in confounded partially observable Markov decision processes[C]//Proceedings of the 39th International Conference on Machine Learning, 2022: 20057-20094. [98] GUO J X, GONG M M, TAO D C. A relational intervention approach for unsupervised dynamics generalization in model-based reinforcement learning[J]. arXiv:2206.04551, 2022. [99] SEITZER M, SCH?LKOPF B, MARTIUS G. Causal influence detection for improving efficiency in reinforcement learning[C]//Advances in Neural Information Processing Systems, 2021: 22905-22918. [100] SONAR A, PACELLI V, MAJUMDAR A. Invariant policy optimization: towards stronger generalization in reinforcement learning[C]//Proceedings of the 3rd Conference on Learning for Dynamics and Control, 2021: 21-33. [101] ZHU Z M, CHEN X H, TIAN H L, et al. Offline reinforcement learning with causal structured world models[J]. arXiv:2206.01474, 2022. [102] TENNENHOLTZ G, SHALIT U, MANNOR S, et al. Bandits with partially observable confounded data[C]//Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence, 2021: 430-439. [103] HERLAU T, LARSEN R. Reinforcement learning of causal variables using mediation analysis[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2022: 6910-6917. [104] HU X, ZHANG R, TANG K, et al. Causality-driven hierarchical structure discovery for reinforcement learning[C]//Advances in Neural Information Processing Systems, 2022: 20064-20076. [105] FENG F, HUANG B W, ZHANG K, et al. Factored adaptation for non-stationary reinforcement learning[C]//Advances in Neural Information Processing Systems, 2022: 31957-31971. [106] HUANG B W, LU C C, LEQI L, et al. Action-sufficient state representation learning for control with structural constraints[C]//Proceedings of the 39th International Conference on Machine Learning, 2022: 9260-9279. [107] HUANG B W, FENG F, LU C C, et al. AdaRL: what, where, and how to adapt in transfer reinforcement learning[J]. arXiv:2107.02729, 2021. [108] BICA I, JARRETT D, VAN DER SCHAAR M. Invariant causal imitation learning for generalizable policies[C]//Advances in Neural Information Processing Systems, 2021: 3952-3964. [109] WEN C, QIAN J, LIN J, et al. Fighting fire with fire: avoiding dnn shortcuts through priming[C]//Proceedings of the 39th International Conference on Machine Learning, 2022: 23723-23750. [110] RUAN K, ZHANG J, DI X, et al. Causal imitation learning via inverse reinforcement learning[C]//Proceedings of the 11th International Conference on Learning Representations, Kigali, Rwanda, 1-5 May, 2023. [111] WILLIAMSON J. Establishing causal claims in medicine[J]. International Studies in Philosophy of Science, 2019, 32(1): 33-61. [112] RAITA Y, CAMARGO JR C A, LIANG L, et al. Leveraging “big data” in respiratory medicine-data science, causal inference, and precision medicine[J]. Expert Review of Respiratory Medicine, 2021, 15(6): 717-721. [113] RICHENS J G, LEE C M, JOHRI S. Improving the accuracy of medical diagnosis with causal machine learning[J]. Nature Communications, 2020, 11(1): 3923-3932. [114] SANCHEZ P, VOISEY J P, XIA T, et al. Causal machine learning for healthcare and precision medicine[J]. Royal Society Open Science, 2022, 9(8): 220638-220653. [115] HU H, KERSCHBERG L. Improved causal models of Alzheimer’s disease[C]//Proceedings of the 2021 IEEE 45th Annual Computers, Software, and Applications Conference, 2021: 274-283. [116] AKNIN E, LAREY A, CALDWELL J M, et al. Harnessing digital pathology and causal learning to improve eosinophilic esophagitis dietary treatment assignment[C]//Proceedings of the 2023 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology, 2023: 1-8. [117] HU L Y, LIN J Y, SIGEL K, et al. Estimating heterogeneous survival treatment effects of lung cancer screening approaches: a causal machine learning analysis[J]. Annals of Epidemiology, 2021, 62: 36-42. [118] FEHR J, PICCININNI M, KURTH T, et al. Assessing the transportability of clinical prediction models for cognitive impairment using causal models[J]. BMC Medical Research Methodology, 2023, 23(1): 187-201. [119] RUST J, AUTEXIER S. Causal inference for personalized treatment effect estimation for given machine learning models[C]//Proceedings of the 2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA), 2022: 1289-1295. [120] SHEN X P, MA S S, VEMURI P, et al. A novel method for causal structure discovery from EHR data and its application to type-2 diabetes mellitus[J]. Scientific Reports, 2021, 11(1): 21025-21034. [121] CASTRO D C, WALKER I, GLOCKER B. Causality matters in medical imaging[J]. Nature Communications, 2020, 11(1): 3673-3683. [122] YANG C H H, HUNG I T, LIU Y C, et al. Treatment learning causal transformer for noisy image classification[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2023: 6139-6150. [123] DAI Q F, WONG Y K, SUN G F, et al. Unsupervised domain adaptation by causal Learning for biometric signal based HCI[J]. ACM Transactions on Multimedia Computing, Communications and Applications, 2023, 20(2): 1-8. [124] LI H M, YU S J, PRINCIPE J. Causal recurrent variational autoencoder for medical time series generation[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2023: 8562-8570. [125] 车翔玖, 武宇宁, 刘全乐. 基于因果特征学习的有权同构图分类算法[J]. 吉林大学学报 (工学版), 2023: 1-6. CHE X J, WU Y N, LIU Q L. A weighted isomorphic graph classification algorithm based on causal feature learning[J]. Journal of Jilin University (Engineering and Technology Edition), 2023: 1-6. [126] WU X, LI J W, QIAN Q, et al. Methods and applications of causal reasoning in medical field[C]//Proceedings of the 2021 7th International Conference on Big Data and Information Analytics (BigDIA), 2021: 79-86. [127] TSOUMAS I, GIANNARAKIS G, SITOKONSTANTINOU V, et al. Evaluating digital agriculture recommendations with causal inference[C]//Proceedings of the AAAI Conference on Artificial IntelligenceI, 2023: 14514-14522. [128] GIANNARAKIS G, SITOKONSTANTINOU V, LORILLA R S, et al. Personalizing sustainable agriculture with causal machine learning[R]. Copernicus Meetings, 2023. [129] LONG Y H, CAO Z W, MAO Y, et al. Research on evaluation elements of urban agricultural green bases: a causal inference-based approach[J]. Land, 2023, 12(8): 1636-1663. [130] LI Z. PBCLM: a top-down causal modeling framework for soil standards and global sustainable agriculture[J]. Environmental Pollution, 2020, 263: 114404-114418. [131] GIANNARAKIS G, SITOKONSTANTINOU V, LORILLA R S, et al. Towards assessing agricultural land suitability with causal machine learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 1442-1452. [132] CALDERON M, LEóN M, Nú?EZ S. Empirical approach to arable land and livestock using co-integration and causality techniques with panel data[C]//Proceedings of the CEUR Workshop, 2021: 44-61. [133] SI R, AZIZ N, RAZA A. Short and long-run causal effects of agriculture, forestry, and other land use on greenhouse gas emissions: evidence from China using VECM approach[J]. Environmental Science and Pollution Research, 2021, 28: 64419-64430. [134] COX JR L A. Re-assessing human mortality risks attributed to agricultural air pollution: insights from causal artificial intelligence[M]//AI-ML for decision and risk analysis: cha- llenges and opportunities for normative decision theory. Berlin: Springer, 2023: 319-350. [135] LIU T, SHETH P, WEI Y, et al. Causal discovery of agricultural management and reservoir operation induced river water quality change[C]//Proceedings of the AGU Fall Meeting, 2022: H32N-1099. [136] ZOU L F, ZHA Y Y, DIAO Y Q, et al. Coupling the causal inference and informer networks for short-term forecasting in irrigation water usage[J]. Water Resources Management, 2023, 37(1): 427-449. [137] SHARMA S, SHARMA S, NEAL A, et al. Causal modeling of soil processes for improved generalization[J]. arXiv:2211.05675, 2022. [138] KLIANGKHLAO M, LIMSIRORATANA S, SAHOH B. The design and development of a causal bayesian networks model for the explanation of agricultural supply chains[J]. IEEE Access, 2022, 10: 86813-86823. [139] 陈鎏鹏, 谢帮生, 周子渭, 等. 数字乡村建设是否推动了农村产业融合——基于双重机器学习的因果推断[J]. 金融与经济, 2024, 5(6) : 60-70. CHEN L P, XIE B S, ZHOU Z W, et al.Whether the construction of digital villages has promoted the integration of rural industries—causal inference based on double machine learning[J]. Finance and Economy, 2024, 5(6): 60-70. [140] 赵春晖, 宋鹏宇. 从结构推断到根因识别——工业过程故障根因诊断研究综述[J]. 控制与决策, 2023, 38(8): 2130-2157. ZHAO C H, SONG P Y. From structure inference to root cause identification: a survey on root cause diagnosis of industrial process faults[J]. Control and Decision, 2023, 38(8): 2130-2157. [141] CHEN X L, WANG J, LIU Q. Distributed system monitoring and fault diagnosis based on causal graphical model[C]//Proceedings of the 2019 1st International Conference on Industrial Artificial Intelligence (IAI), 2019: 1-6. [142] CHEN X L, YANG Y, WANG J. Plant‐wide processes monitoring and fault tracing based on causal graphical model[J]. IET Control Theory & Applications, 2023(1): 1-13. [143] DONG J, CAO K R, PENG K X. Hierarchical causal graph-based fault root cause diagnosis and propagation path identification for complex industrial process monitoring[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-11. [144] QIAO L, LI X T, WANG X, et al. Root cause diagnosis and fault propagation path identification for complex industrial processes based on data space[J]. Measurement, 2024, 226: 114219. [145] MA L, WANG M W, PENG K X. Nonlinear dynamic granger causality analysis framework for root-cause diagnosis of quality-related faults in manufacturing processes[J]. IEEE Transactions on Automation Science and Engineering, 2023, 21(3): 3554-3563. [146] OLIVEIRA E E, MIGUéIS V L, BORGES J L. Understanding overlap in automatic root cause analysis in manufacturing using causal inference[J]. IEEE Access, 2021, 10: 191-201. [147] CHO Y S, KIM S B. Quality-discriminative localization of multisensor signals for root cause analysis[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 52(7): 4374-4387. [148] CHEN Q, FEI X Y, XIE L, et al. Causality analysis in process control based on denoising and periodicity-removing CCM[J]. Journal of Intelligent Manufacturing and Special Equipment, 2020, 1(1): 25-41. [149] SUN Y N, QIN W, ZHUANG Z L, et al. An adaptive fault detection and root-cause analysis scheme for complex industrial processes using moving window 146 and information geometric causal inference[J]. Journal of Intelligent Manufacturing, 2021, 32: 2007-2021. [150] XU Z, DANG Y. Automated digital cause-and-effect diagrams to assist causal analysis in problem-solving: a data-driven approach[J]. International Journal of Production Research, 2020, 58(17): 5359-5379. [151] WANG H N, XU Y M, PENG T, et al. Two-stage approach to causality analysis-based quality problem solving for discrete manufacturing systems[J]. Journal of Engineering Design, 2023(1): 1-25. [152] LIU Y X, JAFARPOUR B. Graph attention network with Granger causality map for fault detection and root cause diagnosis[J]. Computers & Chemical Engineering, 2024, 180: 108453. [153] MARTIN M, SUNMOLA F, LAUDER D. Participatory modelling of information technology equipment vulnerability using causal loop analysis[C]//Proceedings of the International Conference on Flexible Automation and Intelligent Manufacturing, 2022: 268-276. [154] HUA J Q, LI Y G, LIU C Q, et al. A zero-shot prediction method based on causal inference under non-stationary manufacturing environments for complex manufacturing systems[J]. Robotics and Computer-Integrated Manufacturing, 2022, 77: 102356-102365. [155] LEE T E, VATS S, GIRDHAR S, et al. SCALE: causal learning and discovery of robot manipulation skills using simulation[C]//Proceedings of the 7th Annual Conference on Robot Learning, 2023: 2229-2256. [156] LEE T E, ZHAO J A, SAWHNEY A S, et al. Causal reasoning in simulation for structure and transfer learning of robot manipulation policies[C]//Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021: 4776-4782. [157] DIEHL M, RAMIREZ-AMARO K. Why did I fail? a causal-based method to find explanations for robot failures[J]. IEEE Robotics and Automation Letters, 2022, 7(4): 8925-8932. [158] ZHANG Y, FENG F L, HE X N, et al. Causal intervention for leveraging popularity bias in recommendation[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2021: 11-20. [159] LI Q, WANG X M, WANG Z C, et al. Be causal: de-biasing social network confounding in recommendation[J]. ACM Transactions on Knowledge Discovery from Data, 2023, 17(1): 1-23. [160] ZHU X Y, ZHANG Y, YANG X, et al. Mitigating hidden confounding effects for causal recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(9): 4794-4805. [161] HE X N, ZHANG Y, FENG F, et al. Addressing confounding feature issue for causal recommendation[J]. ACM Transactions on Information Systems, 2023, 41(3): 1-23. [162] NABI R, PFEIFFER J, CHARLES D, et al. Causal inference in the presence of interference in sponsored search advertising[J]. Frontiers in Big Data, 2022, 5: 888592-888604. [163] WAISMAN C, NAIR H S, CARRION C. Online causal inference for advertising in real-time bidding auctions[J]. arXiv:1908.08600, 2019. [164] GUI G, NAIR H, NIU F. Auction throttling and causal inference of online advertising effects[J]. arXiv:2112.15155, 2021. [165] LIU Y, LI G, LIN L. Cross-modal causal relational reasoning for event-level visual question answering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(10): 11624-11641. |
| [1] | 黄施洋, 奚雪峰, 崔志明. 大模型时代下的汉语自然语言处理研究与探索[J]. 计算机工程与应用, 2025, 61(1): 80-97. |
| [2] | 裴文灿, 孙光伟, 黄金国, 徐丁辉, 刘竞. 田间即时鲜烟叶SPAD值预测和成熟度识别方法[J]. 计算机工程与应用, 2024, 60(8): 348-360. |
| [3] | 邢长征, 徐佳玉. LightGBM混合模型在乳腺癌诊断中的应用[J]. 计算机工程与应用, 2024, 60(6): 330-338. |
| [4] | 宋程, 谢振平. 中文纠错任务为例的数据集增强质量评价方法[J]. 计算机工程与应用, 2024, 60(3): 331-339. |
| [5] | 姜璐璐, 高锦涛. 面向机器学习的数据库参数调优技术综述[J]. 计算机工程与应用, 2024, 60(3): 1-16. |
| [6] | 吴海涛, 蔡咏琦, 高建华. Bagging异构集成的代码异味检测与重构优先级划分[J]. 计算机工程与应用, 2024, 60(3): 138-147. |
| [7] | 郑承蔚, 王海凤, 刘瑞. SDN中DDoS攻击检测研究综述[J]. 计算机工程与应用, 2024, 60(24): 79-96. |
| [8] | 刘正美, 魏雪梅, 张俊鹏, 覃泊渊, 蒋玉, 张琦, 杨皓琳, 高健. 药物分子与靶标蛋白结合亲和力预测研究进展[J]. 计算机工程与应用, 2024, 60(23): 79-90. |
| [9] | 刘小明, 曹梦远, 杨关, 刘杰, 王杭. 因果关系表示增强的跨领域命名实体识别[J]. 计算机工程与应用, 2024, 60(18): 176-188. |
| [10] | 李明桂, 周焕银, 龚利文. ROV水下障碍物检测和避障技术的应用综述[J]. 计算机工程与应用, 2024, 60(17): 34-47. |
| [11] | 周雅兰, 宋晓鸥. 利用机器学习的GNSS欺骗检测综述[J]. 计算机工程与应用, 2024, 60(17): 62-73. |
| [12] | 高帅, 奚雪峰, 郑倩, 崔志明, 盛胜利. 面向数据可视化的自然语言接口研究综述[J]. 计算机工程与应用, 2024, 60(15): 24-41. |
| [13] | 邓尚昆, 宁宏, 刘宗华, 朱应可. 企业债券违约风险识别的可解释机器学习模型研究[J]. 计算机工程与应用, 2024, 60(12): 334-345. |
| [14] | 郝志峰, 张维杰, 蔡瑞初, 陈薇. 基于条件独立性检验的非稳态因果发现方法[J]. 计算机工程与应用, 2024, 60(10): 113-120. |
| [15] | 赵继贵, 钱育蓉, 王魁, 侯树祥, 陈嘉颖. 中文命名实体识别研究综述[J]. 计算机工程与应用, 2024, 60(1): 15-27. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||