计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (6): 64-83.DOI: 10.3778/j.issn.1002-8331.2405-0069

• 热点与综述 • 上一篇    下一篇

结构化思维提示增强大语言模型推理能力综述

陶江垚,奚雪峰,盛胜利,崔志明,左严   

  1. 1.苏州科技大学 电子与信息工程学院,江苏 苏州 215000
    2.苏州市虚拟现实智能交互应用技术重点实验室,江苏 苏州 215000
    3.苏州科技大学 智慧城市研究院,江苏 苏州 215000
    4.德州理工大学,德克萨斯 拉伯克 79401
    5.江苏新希望科技有限公司,江苏 苏州 215000
  • 出版日期:2025-03-15 发布日期:2025-03-14

Review on Enhancing Reasoning Abilities of Large Language Model Through Structured Thinking Prompts

TAO Jiangyao, XI Xuefeng, SHENG Shengli, CUI Zhiming, ZUO Yan   

  1. 1.School of Electronic & Information Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu 215000, China
    2.Suzhou Key Laboratory of Virtual Reality Intelligent Interaction and Application Technology, Suzhou, Jiangsu 215000, China
    3.Suzhou Smart City Research Institute, Suzhou University of Science and Technology, Suzhou, Jiangsu 215000, China
    4.Texas Institute of Technology, Lubbock, Texas 79401, USA
    5.Jiangsu New Hope Technology Co., Ltd., Suzhou, Jiangsu 215000, China


  • Online:2025-03-15 Published:2025-03-14

摘要: 近年来,自然语言处理领域见证了提示学习(prompt learning)的蓬勃兴起,特别是在GPT、Claude等大语言模型中的卓越表现,引发了学术界的广泛兴趣与深入研究。鉴于其巨大潜力,如何深化对提示学习机制的理解并研究出更为高效的提示设计策略,已成为该领域亟待解决的核心议题。创新性地引入了“结构化思维提示”的概念,旨在从人类认知逻辑的高度,对现有的提示学习范式进行系统性剖析与重构。阐述了提示学习的基本原理,并深入探讨了认知科学理论如何为提示设计提供灵感与指导;构建了一个全面的结构化思维提示框架,详尽介绍了思维链提示、基于分解思想、基于框架以及基于团队协作的提示四种核心方法,展现了结构化思维提示在提升模型性能与泛化能力方面的独特价值;提出了针对结构化思维提示的评估体系,旨在科学、客观地衡量其效果,并探讨了若干优化策略,以期进一步提升提示设计的效率与效果;指出了当前结构化思维提示面临的挑战,特别是计算成本上升的问题,为后续研究指明了方向;展望了结构化思维提示的未来发展趋势,强调了其在推动自然语言处理乃至人工智能领域持续进步中的重要作用和机遇。

关键词: 大语言模型, 提示学习, 结构化思维提示

Abstract: In recent years, the field of natural language processing has witnessed the rapid rise of prompt learning, particularly with the outstanding performance demonstrated in large language models such as GPT and Claude. It has sparked widespread academic interest and extensive research. In view of its immense potential, how to understand the underlying mechanisms of prompt learning and develope more efficient prompt design strategies have become pressing issues in the field. This paper introduces the innovative concept of structured thinking prompts aiming to systematically analyze and reconstruct existing prompt learning paradigms from the perspective of human cognitive logic. The paper explains the basic principles of prompt learning and delves into how cognitive science theories provide inspiration and guidance for prompt design. It then constructs a comprehensive structured thinking prompt framework, detailing four core methods: chain-of-thought prompts, decomposition-based prompts, framework-based prompts, and team collaboration-based prompts. These methods highlight the unique value of structured thinking prompts in enhancing model performance and generalization capabilities. Furthermore, the paper proposes an evaluation system for structured thinking prompts, aiming at scientifically and objectively assessing their effectiveness. It also explores various optimization strategies to further improve the efficiency and effectiveness of prompt design. Additionally, the challenges currently faced by structured thinking prompts, particularly the issue of rising computational costs, are discussed, providing direction for future research. The paper envisions the future development trends of structured thinking prompts, emphasizing their pivotal role and potential opportunities in advancing not only natural language processing but also the broader field of artificial intelligence.

Key words: large language model, prompt learning, structured thinking prompt