[1] GREINER A N, HELLINGS P W, ROTIROTI G, et al. Allergic rhinitis[J]. Lancet, 2011, 378(9809): 2112-2122.
[2] EIFAN A O, DURHAM S R. Pathogenesis of rhinitis[J]. Clinical & Experimental Allergy, 2016, 46(9): 1139-1151.
[3] CHENG L, CHEN J, FU Q, et al. Chinese society of allergy guidelines for diagnosis and treatment of allergic rhinitis[J]. Allergy, Asthma & Immunology Research, 2018, 10(4): 300-353.
[4] LU W. Advances on the treatment of allergic rhinitis by traditional Chinese medicine and western medicine[J]. Journal of Biosciences and Medicines, 2023, 11(4): 137-152.
[5] WANG C, YU H, WAN F. Information retrieval technology based on knowledge graph[C]//Proceedings of the 2018 3rd International Conference on Advances in Materials, Mechatronics and Civil Engineering, 2018: 291-296.
[6] YE Q, HSIEH C Y, YANG Z, et al. A unified drug-target interaction prediction framework based on knowledge graph and recommendation system[J]. Nature Communications, 2021, 12(1): 6775.
[7] YANG Z, WANG Y, GAN J, et al. Design and research of intelligent question-answering (Q&A) system based on high school course knowledge graph[J]. Mobile Networks and Applications, 2021, 26(5): 1884-1890.
[8] 杨涛, 王欣宇, 朱垚, 等. 大语言模型驱动的中医智能诊疗研究思路与方法[J]. 南京中医药大学学报, 2023, 39(10): 967-971.
YANG T, WANG X Y, ZHU Y, et al. Research ideas and methods of intelligent diagnosis and treatment of traditional Chinese medicine driven by large language model[J]. Journal of Nanjing University of Traditional Chinese Medicine, 2023, 39(10): 967-971.
[9] WANG L, MA C, FENG X, et al. A survey on large language model based autonomous agents[J]. Frontiers of Computer Science, 2024, 18(6): 186345.
[10] HOFFMANN J, BORGEAUD S, MENSCH A, et al. Training compute-optimal large language models[J]. arXiv:2203.15556, 2022.
[11] SHANAHAN M. Talking about large language models[J]. Communications of the ACM, 2024, 67(2): 68-79.
[12] TAYLOR R, KARDAS M, CUCURULL G, et al. Galactica: a large language model for science[J]. arXiv:2211.09085, 2022.
[13] WU M, YI X, YU H, et al. Nebula graph: an open source distributed graph database[J]. arXiv:2206.07278, 2022.
[14] 文森, 钱力, 胡懋地, 等. 基于大语言模型的问答技术研究进展综述[J]. 数据分析与知识发现, 2024, 8(6): 16-29.
WEN S, QIAN L, HU M D, et al. Review of research progress on question-answering techniques based on large language models[J]. Data Analysis and Knowledge Discovery, 2024, 8(6): 16-29.
[15] ORRù G, PIARULLI A, CONVERSANO C, et al. Human-like problem-solving abilities in large language models using ChatGPT[J]. Frontiers in Artificial Intelligence, 2023, 6: 1199350.
[16] KASNECI E, SESSLER K, STEFAN K, et al. ChatGPT for good? On opportunities and challenges of large language models for education[J]. Learning and Individual Differences, 2023, 103: 102274.
[17] FLORIDI L, CHIRIATTI M. GPT-3: its nature, scope, limits, and consequences[J]. Minds and Machines, 2020, 30(4): 681-694.
[18] WU T, HE S, LIU J, et al. A brief overview of ChatGPT: the history, status quo and potential future development[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(5): 1122-1136.
[19] SHEN Y, SONG K, TAN X, et al. HuggingGPT: solving AI tasks with ChatGPT and its friends in hugging face[C]//Advances in Neural Information Processing Systems 36, 2023.
[20] 裴炳森, 李欣, 吴越. 基于ChatGPT的电信诈骗案件类型影响力评估[J]. 计算机科学与探索, 2023, 17(10): 2413-2425.
PEI B S, LI X, WU Y. Influence evaluation of telecom fraud case types based on ChatGPT[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2413-2425.
[21] YAO B W, JIANG M, YANG D Y, et al. Empowering LLM-based machine translation with cultural awareness[J]. arXiv:2305.14328, 2023.
[22] HERBOLD S, HAUTLI-JANISZ A, HEUER U, et al. A large-scale comparison of human-written versus ChatGPT-generated essays[J]. Scientific Reports, 2023, 13(1): 18617.
[23] HU Z Q, LI X Y, PAN X Y, et al. A question answering system for assembly process of wind turbines based on multi-modal knowledge graph and large language model[J]. Journal of Engineering Design, 2023. DOI:10.1080/09544828.2023.2272555.
[24] 张鹤译, 王鑫, 韩立帆, 等. 大语言模型融合知识图谱的问答系统研究[J]. 计算机科学与探索, 2023, 17(10): 2377-2388.
ZHANG H Y, WANG X, HAN L F, et al. Research on question answering system on joint of knowledge graph and large language models[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2377-2388.
[25] TANG R, HAN X, JIANG X, et al. Does synthetic data generation of LLMs help clinical text mining?[J]. arXiv:2303.04360, 2023.
[26] NOV O, SINGH N, MANN D. Putting ChatGPT’s medical advice to the (turing) test: survey study[J]. JMIR Medical Education, 2023, 9: e46939.
[27] CHEN S, KANN B, FOOTE M, et al. The utility of ChatGPT for cancer treatment information[J]. medRxiv, 2023. DOI:10.1101/2023.03.16.23287316.
[28] JEBLICK K, SCHACHTNER B, DEXL J, et al. ChatGPT makes medicine easy to swallow: an exploratory case study on simplified radiology reports[J]. European Radiology, 2024, 34(5): 2817-2825.
[29] 王松, 李正钧, 杨涛, 等. 国医大师周仲瑛辨治肺癌的中医药本体构建研究[J]. 世界科学技术-中医药现代化, 2022, 24(2): 495-501.
WANG S, LI Z J, YANG T, et al. Study on construction of ontology for diagnosis and treatment of lung cancer by professor Zhou Zhongying in traditional Chinese medicine[J]. World Science and Technology-Modernization of Traditional Chinese Medicine, 2022, 24(2): 495-501.
[30] 黄贺瑄, 王晓燕, 顾正位, 等. 医学知识图谱构建技术及发展现状研究[J]. 计算机工程与应用, 2023, 59(13): 33-48.
HUANG H X, WANG X Y, GU Z W, et al. Research on construction technology and development status of medical knowledge graph[J]. Computer Engineering and Applications, 2023, 59(13): 33-48.
[31] MONTEIRO J, Sá F, BERNARDINO J. Experimental evaluation of graph databases: JanusGraph, Nebula Graph, Neo4j, and TigerGraph[J]. Applied Sciences, 2023, 13(9): 5770. |